Retour
Version Originale

./aip/1.8aipmod/include/irrMath.h :


// Copyright (C) 2002-2011 Nikolaus Gebhardt

// This file is part of the "Irrlicht Engine".

// For conditions of distribution and use, see copyright notice in irrlicht.h


#ifndef __IRR_MATH_H_INCLUDED__
#define __IRR_MATH_H_INCLUDED__

#include "IrrCompileConfig.h"
#include "irrTypes.h"
#include <math.h>
#include <float.h>
#include <stdlib.h> // for abs() etc.

#include <limits.h> // For INT_MAX / UINT_MAX


#if defined(_IRR_SOLARIS_PLATFORM_) || defined(__BORLANDC__) || defined (__BCPLUSPLUS__) || defined (_WIN32_WCE)
	#define sqrtf(X) (irr::f32)sqrt((irr::f64)(X))
	#define sinf(X) (irr::f32)sin((irr::f64)(X))
	#define cosf(X) (irr::f32)cos((irr::f64)(X))
	#define asinf(X) (irr::f32)asin((irr::f64)(X))
	#define acosf(X) (irr::f32)acos((irr::f64)(X))
	#define atan2f(X,Y) (irr::f32)atan2((irr::f64)(X),(irr::f64)(Y))
	#define ceilf(X) (irr::f32)ceil((irr::f64)(X))
	#define floorf(X) (irr::f32)floor((irr::f64)(X))
	#define powf(X,Y) (irr::f32)pow((irr::f64)(X),(irr::f64)(Y))
	#define fmodf(X,Y) (irr::f32)fmod((irr::f64)(X),(irr::f64)(Y))
	#define fabsf(X) (irr::f32)fabs((irr::f64)(X))
	#define logf(X) (irr::f32)log((irr::f64)(X))
#endif

#ifndef FLT_MAX
#define FLT_MAX 3.402823466E+38F
#endif

namespace irr
{
namespace core
{

	//! Rounding error constant often used when comparing f32 values.


	const s32 ROUNDING_ERROR_S32 = 0;
	const f32 ROUNDING_ERROR_f32 = 0.000001f;
	const f64 ROUNDING_ERROR_f64 = 0.00000001;

#ifdef PI // make sure we don't collide with a define

#undef PI
#endif
	//! Constant for PI.

	const f32 PI		= 3.14159265359f;

	//! Constant for reciprocal of PI.

	const f32 RECIPROCAL_PI	= 1.0f/PI;

	//! Constant for half of PI.

	const f32 HALF_PI	= PI/2.0f;

#ifdef PI64 // make sure we don't collide with a define

#undef PI64
#endif
	//! Constant for 64bit PI.

	const f64 PI64		= 3.1415926535897932384626433832795028841971693993751;

	//! Constant for 64bit reciprocal of PI.

	const f64 RECIPROCAL_PI64 = 1.0/PI64;

	//! 32bit Constant for converting from degrees to radians

	const f32 DEGTORAD = PI / 180.0f;

	//! 32bit constant for converting from radians to degrees (formally known as GRAD_PI)

	const f32 RADTODEG   = 180.0f / PI;

	//! 64bit constant for converting from degrees to radians (formally known as GRAD_PI2)

	const f64 DEGTORAD64 = PI64 / 180.0;

	//! 64bit constant for converting from radians to degrees

	const f64 RADTODEG64 = 180.0 / PI64;

	//! Utility function to convert a radian value to degrees

	/** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
	\param radians	The radians value to convert to degrees.
	*/
	inline f32 radToDeg(f32 radians)
	{
		return RADTODEG * radians;
	}

	//! Utility function to convert a radian value to degrees

	/** Provided as it can be clearer to write radToDeg(X) than RADTODEG * X
	\param radians	The radians value to convert to degrees.
	*/
	inline f64 radToDeg(f64 radians)
	{
		return RADTODEG64 * radians;
	}

	//! Utility function to convert a degrees value to radians

	/** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
	\param degrees	The degrees value to convert to radians.
	*/
	inline f32 degToRad(f32 degrees)
	{
		return DEGTORAD * degrees;
	}

	//! Utility function to convert a degrees value to radians

	/** Provided as it can be clearer to write degToRad(X) than DEGTORAD * X
	\param degrees	The degrees value to convert to radians.
	*/
	inline f64 degToRad(f64 degrees)
	{
		return DEGTORAD64 * degrees;
	}

	//! returns minimum of two values. Own implementation to get rid of the STL (VS6 problems)

	template<class T>
	inline const T& min_(const T& a, const T& b)
	{
		return a < b ? a : b;
	}

	//! returns minimum of three values. Own implementation to get rid of the STL (VS6 problems)

	template<class T>
	inline const T& min_(const T& a, const T& b, const T& c)
	{
		return a < b ? min_(a, c) : min_(b, c);
	}

	//! returns maximum of two values. Own implementation to get rid of the STL (VS6 problems)

	template<class T>
	inline const T& max_(const T& a, const T& b)
	{
		return a < b ? b : a;
	}

	//! returns maximum of three values. Own implementation to get rid of the STL (VS6 problems)

	template<class T>
	inline const T& max_(const T& a, const T& b, const T& c)
	{
		return a < b ? max_(b, c) : max_(a, c);
	}

	//! returns abs of two values. Own implementation to get rid of STL (VS6 problems)

	template<class T>
	inline T abs_(const T& a)
	{
		return a < (T)0 ? -a : a;
	}

	//! returns linear interpolation of a and b with ratio t

	//! \return: a if t==0, b if t==1, and the linear interpolation else

	template<class T>
	inline T lerp(const T& a, const T& b, const f32 t)
	{
		return (T)(a*(1.f-t)) + (b*t);
	}

	//! clamps a value between low and high

	template <class T>
	inline const T clamp (const T& value, const T& low, const T& high)
	{
		return min_ (max_(value,low), high);
	}

	//! swaps the content of the passed parameters

	// Note: We use the same trick as boost and use two template arguments to

	// avoid ambiguity when swapping objects of an Irrlicht type that has not

	// it's own swap overload. Otherwise we get conflicts with some compilers

	// in combination with stl.

	template <class T1, class T2>
	inline void swap(T1& a, T2& b)
	{
		T1 c(a);
		a = b;
		b = c;
	}

	//! returns if a equals b, taking possible rounding errors into account

	inline bool equals(const f64 a, const f64 b, const f64 tolerance = ROUNDING_ERROR_f64)
	{
		return (a + tolerance >= b) && (a - tolerance <= b);
	}

	//! returns if a equals b, taking possible rounding errors into account

	inline bool equals(const f32 a, const f32 b, const f32 tolerance = ROUNDING_ERROR_f32)
	{
		return (a + tolerance >= b) && (a - tolerance <= b);
	}
#if 0
	//! returns if a equals b, not using any rounding tolerance

	inline bool equals(const s32 a, const s32 b)
	{
		return (a == b);
	}

	//! returns if a equals b, not using any rounding tolerance

	inline bool equals(const u32 a, const u32 b)
	{
		return (a == b);
	}
#endif
	//! returns if a equals b, taking an explicit rounding tolerance into account

	inline bool equals(const s32 a, const s32 b, const s32 tolerance = ROUNDING_ERROR_S32)
	{
		return (a + tolerance >= b) && (a - tolerance <= b);
	}

	//! returns if a equals b, taking an explicit rounding tolerance into account

	inline bool equals(const u32 a, const u32 b, const s32 tolerance = ROUNDING_ERROR_S32)
	{
		return (a + tolerance >= b) && (a - tolerance <= b);
	}


	//! returns if a equals zero, taking rounding errors into account

	inline bool iszero(const f64 a, const f64 tolerance = ROUNDING_ERROR_f64)
	{
		return fabs(a) <= tolerance;
	}

	//! returns if a equals zero, taking rounding errors into account

	inline bool iszero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
	{
		return fabsf(a) <= tolerance;
	}

	//! returns if a equals not zero, taking rounding errors into account

	inline bool isnotzero(const f32 a, const f32 tolerance = ROUNDING_ERROR_f32)
	{
		return fabsf(a) > tolerance;
	}

	//! returns if a equals zero, taking rounding errors into account

	inline bool iszero(const s32 a, const s32 tolerance = 0)
	{
		return ( a & 0x7ffffff ) <= tolerance;
	}

	//! returns if a equals zero, taking rounding errors into account

	inline bool iszero(const u32 a, const u32 tolerance = 0)
	{
		return a <= tolerance;
	}

	inline s32 s32_min(s32 a, s32 b)
	{
		const s32 mask = (a - b) >> 31;
		return (a & mask) | (b & ~mask);
	}

	inline s32 s32_max(s32 a, s32 b)
	{
		const s32 mask = (a - b) >> 31;
		return (b & mask) | (a & ~mask);
	}

	inline s32 s32_clamp (s32 value, s32 low, s32 high)
	{
		return s32_min(s32_max(value,low), high);
	}

	/*
		float IEEE-754 bit represenation

		0      0x00000000
		1.0    0x3f800000
		0.5    0x3f000000
		3      0x40400000
		+inf   0x7f800000
		-inf   0xff800000
		+NaN   0x7fc00000 or 0x7ff00000
		in general: number = (sign ? -1:1) * 2^(exponent) * 1.(mantissa bits)
	*/

	typedef union { u32 u; s32 s; f32 f; } inttofloat;

	#define F32_AS_S32(f)		(*((s32 *) &(f)))
	#define F32_AS_U32(f)		(*((u32 *) &(f)))
	#define F32_AS_U32_POINTER(f)	( ((u32 *) &(f)))

	#define F32_VALUE_0		0x00000000
	#define F32_VALUE_1		0x3f800000
	#define F32_SIGN_BIT		0x80000000U
	#define F32_EXPON_MANTISSA	0x7FFFFFFFU

	//! code is taken from IceFPU

	//! Integer representation of a floating-point value.

#ifdef IRRLICHT_FAST_MATH
	#define IR(x)                           ((u32&)(x))
#else
	inline u32 IR(f32 x) {inttofloat tmp; tmp.f=x; return tmp.u;}
#endif

	//! Absolute integer representation of a floating-point value

	#define AIR(x)				(IR(x)&0x7fffffff)

	//! Floating-point representation of an integer value.

#ifdef IRRLICHT_FAST_MATH
	#define FR(x)                           ((f32&)(x))
#else
	inline f32 FR(u32 x) {inttofloat tmp; tmp.u=x; return tmp.f;}
	inline f32 FR(s32 x) {inttofloat tmp; tmp.s=x; return tmp.f;}
#endif

	//! integer representation of 1.0

	#define IEEE_1_0			0x3f800000
	//! integer representation of 255.0

	#define IEEE_255_0			0x437f0000

#ifdef IRRLICHT_FAST_MATH
	#define	F32_LOWER_0(f)		(F32_AS_U32(f) >  F32_SIGN_BIT)
	#define	F32_LOWER_EQUAL_0(f)	(F32_AS_S32(f) <= F32_VALUE_0)
	#define	F32_GREATER_0(f)	(F32_AS_S32(f) >  F32_VALUE_0)
	#define	F32_GREATER_EQUAL_0(f)	(F32_AS_U32(f) <= F32_SIGN_BIT)
	#define	F32_EQUAL_1(f)		(F32_AS_U32(f) == F32_VALUE_1)
	#define	F32_EQUAL_0(f)		( (F32_AS_U32(f) & F32_EXPON_MANTISSA ) == F32_VALUE_0)

	// only same sign

	#define	F32_A_GREATER_B(a,b)	(F32_AS_S32((a)) > F32_AS_S32((b)))

#else

	#define	F32_LOWER_0(n)		((n) <  0.0f)
	#define	F32_LOWER_EQUAL_0(n)	((n) <= 0.0f)
	#define	F32_GREATER_0(n)	((n) >  0.0f)
	#define	F32_GREATER_EQUAL_0(n)	((n) >= 0.0f)
	#define	F32_EQUAL_1(n)		((n) == 1.0f)
	#define	F32_EQUAL_0(n)		((n) == 0.0f)
	#define	F32_A_GREATER_B(a,b)	((a) > (b))
#endif


#ifndef REALINLINE
	#ifdef _MSC_VER
		#define REALINLINE __forceinline
	#else
		#define REALINLINE inline
	#endif
#endif

#if defined(__BORLANDC__) || defined (__BCPLUSPLUS__)

	// 8-bit bools in borland builder


	//! conditional set based on mask and arithmetic shift

	REALINLINE u32 if_c_a_else_b ( const c8 condition, const u32 a, const u32 b )
	{
		return ( ( -condition >> 7 ) & ( a ^ b ) ) ^ b;
	}

	//! conditional set based on mask and arithmetic shift

	REALINLINE u32 if_c_a_else_0 ( const c8 condition, const u32 a )
	{
		return ( -condition >> 31 ) & a;
	}
#else

	//! conditional set based on mask and arithmetic shift

	REALINLINE u32 if_c_a_else_b ( const s32 condition, const u32 a, const u32 b )
	{
		return ( ( -condition >> 31 ) & ( a ^ b ) ) ^ b;
	}

	//! conditional set based on mask and arithmetic shift

	REALINLINE u16 if_c_a_else_b ( const s16 condition, const u16 a, const u16 b )
	{
		return ( ( -condition >> 15 ) & ( a ^ b ) ) ^ b;
	}

	//! conditional set based on mask and arithmetic shift

	REALINLINE u32 if_c_a_else_0 ( const s32 condition, const u32 a )
	{
		return ( -condition >> 31 ) & a;
	}
#endif

	/*
		if (condition) state |= m; else state &= ~m;
	*/
	REALINLINE void setbit_cond ( u32 &state, s32 condition, u32 mask )
	{
		// 0, or any postive to mask

		//s32 conmask = -condition >> 31;

		state ^= ( ( -condition >> 31 ) ^ state ) & mask;
	}

	inline f32 round_( f32 x )
	{
		return floorf( x + 0.5f );
	}

	REALINLINE void clearFPUException ()
	{
#ifdef IRRLICHT_FAST_MATH
		return;
#ifdef feclearexcept
		feclearexcept(FE_ALL_EXCEPT);
#elif defined(_MSC_VER)
		__asm fnclex;
#elif defined(__GNUC__) && defined(__x86__)
		__asm__ __volatile__ ("fclex \n\t");
#else
#  warn clearFPUException not supported.
#endif
#endif
	}

	// calculate: sqrt ( x )

	REALINLINE f32 squareroot(const f32 f)
	{
		return sqrtf(f);
	}

	// calculate: sqrt ( x )

	REALINLINE f64 squareroot(const f64 f)
	{
		return sqrt(f);
	}

	// calculate: sqrt ( x )

	REALINLINE s32 squareroot(const s32 f)
	{
		return static_cast<s32>(squareroot(static_cast<f32>(f)));
	}

	// calculate: 1 / sqrt ( x )

	REALINLINE f64 reciprocal_squareroot(const f64 x)
	{
		return 1.0 / sqrt(x);
	}

	// calculate: 1 / sqrtf ( x )

	REALINLINE f32 reciprocal_squareroot(const f32 f)
	{
#if defined ( IRRLICHT_FAST_MATH )
	#if defined(_MSC_VER)
		// SSE reciprocal square root estimate, accurate to 12 significant

		// bits of the mantissa

		f32 recsqrt;
		__asm rsqrtss xmm0, f           // xmm0 = rsqrtss(f)

		__asm movss recsqrt, xmm0       // return xmm0

		return recsqrt;

/*
		// comes from Nvidia

		u32 tmp = (u32(IEEE_1_0 << 1) + IEEE_1_0 - *(u32*)&x) >> 1;
		f32 y = *(f32*)&tmp;
		return y * (1.47f - 0.47f * x * y * y);
*/
	#else
		return 1.f / sqrtf(f);
	#endif
#else // no fast math

		return 1.f / sqrtf(f);
#endif
	}

	// calculate: 1 / sqrtf( x )

	REALINLINE s32 reciprocal_squareroot(const s32 x)
	{
		return static_cast<s32>(reciprocal_squareroot(static_cast<f32>(x)));
	}

	// calculate: 1 / x

	REALINLINE f32 reciprocal( const f32 f )
	{
#if defined (IRRLICHT_FAST_MATH)

		// SSE Newton-Raphson reciprocal estimate, accurate to 23 significant

		// bi ts of the mantissa

		// One Newtown-Raphson Iteration:

		// f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)

		f32 rec;
		__asm rcpss xmm0, f               // xmm0 = rcpss(f)

		__asm movss xmm1, f               // xmm1 = f

		__asm mulss xmm1, xmm0            // xmm1 = f * rcpss(f)

		__asm mulss xmm1, xmm0            // xmm2 = f * rcpss(f) * rcpss(f)

		__asm addss xmm0, xmm0            // xmm0 = 2 * rcpss(f)

		__asm subss xmm0, xmm1            // xmm0 = 2 * rcpss(f)

										  //        - f * rcpss(f) * rcpss(f)

		__asm movss rec, xmm0             // return xmm0

		return rec;


		//! i do not divide through 0.. (fpu expection)

		// instead set f to a high value to get a return value near zero..

		// -1000000000000.f.. is use minus to stay negative..

		// must test's here (plane.normal dot anything ) checks on <= 0.f

		//u32 x = (-(AIR(f) != 0 ) >> 31 ) & ( IR(f) ^ 0xd368d4a5 ) ^ 0xd368d4a5;

		//return 1.f / FR ( x );


#else // no fast math

		return 1.f / f;
#endif
	}

	// calculate: 1 / x

	REALINLINE f64 reciprocal ( const f64 f )
	{
		return 1.0 / f;
	}


	// calculate: 1 / x, low precision allowed

	REALINLINE f32 reciprocal_approxim ( const f32 f )
	{
#if defined( IRRLICHT_FAST_MATH)

		// SSE Newton-Raphson reciprocal estimate, accurate to 23 significant

		// bi ts of the mantissa

		// One Newtown-Raphson Iteration:

		// f(i+1) = 2 * rcpss(f) - f * rcpss(f) * rcpss(f)

		f32 rec;
		__asm rcpss xmm0, f               // xmm0 = rcpss(f)

		__asm movss xmm1, f               // xmm1 = f

		__asm mulss xmm1, xmm0            // xmm1 = f * rcpss(f)

		__asm mulss xmm1, xmm0            // xmm2 = f * rcpss(f) * rcpss(f)

		__asm addss xmm0, xmm0            // xmm0 = 2 * rcpss(f)

		__asm subss xmm0, xmm1            // xmm0 = 2 * rcpss(f)

										  //        - f * rcpss(f) * rcpss(f)

		__asm movss rec, xmm0             // return xmm0

		return rec;


/*
		// SSE reciprocal estimate, accurate to 12 significant bits of

		f32 rec;
		__asm rcpss xmm0, f             // xmm0 = rcpss(f)

		__asm movss rec , xmm0          // return xmm0

		return rec;
*/
/*
		register u32 x = 0x7F000000 - IR ( p );
		const f32 r = FR ( x );
		return r * (2.0f - p * r);
*/
#else // no fast math

		return 1.f / f;
#endif
	}


	REALINLINE s32 floor32(f32 x)
	{
#ifdef IRRLICHT_FAST_MATH
		const f32 h = 0.5f;

		s32 t;

#if defined(_MSC_VER)
		__asm
		{
			fld	x
			fsub	h
			fistp	t
		}
#elif defined(__GNUC__)
		__asm__ __volatile__ (
			"fsub %2 \n\t"
			"fistpl %0"
			: "=m" (t)
			: "t" (x), "f" (h)
			: "st"
			);
#else
#  warn IRRLICHT_FAST_MATH not supported.
		return (s32) floorf ( x );
#endif
		return t;
#else // no fast math

		return (s32) floorf ( x );
#endif
	}


	REALINLINE s32 ceil32 ( f32 x )
	{
#ifdef IRRLICHT_FAST_MATH
		const f32 h = 0.5f;

		s32 t;

#if defined(_MSC_VER)
		__asm
		{
			fld	x
			fadd	h
			fistp	t
		}
#elif defined(__GNUC__)
		__asm__ __volatile__ (
			"fadd %2 \n\t"
			"fistpl %0 \n\t"
			: "=m"(t)
			: "t"(x), "f"(h)
			: "st"
			);
#else
#  warn IRRLICHT_FAST_MATH not supported.
		return (s32) ceilf ( x );
#endif
		return t;
#else // not fast math

		return (s32) ceilf ( x );
#endif
	}



	REALINLINE s32 round32(f32 x)
	{
#if defined(IRRLICHT_FAST_MATH)
		s32 t;

#if defined(_MSC_VER)
		__asm
		{
			fld   x
			fistp t
		}
#elif defined(__GNUC__)
		__asm__ __volatile__ (
			"fistpl %0 \n\t"
			: "=m"(t)
			: "t"(x)
			: "st"
			);
#else
#  warn IRRLICHT_FAST_MATH not supported.
		return (s32) round_(x);
#endif
		return t;
#else // no fast math

		return (s32) round_(x);
#endif
	}

	inline f32 f32_max3(const f32 a, const f32 b, const f32 c)
	{
		return a > b ? (a > c ? a : c) : (b > c ? b : c);
	}

	inline f32 f32_min3(const f32 a, const f32 b, const f32 c)
	{
		return a < b ? (a < c ? a : c) : (b < c ? b : c);
	}

	inline f32 fract ( f32 x )
	{
		return x - floorf ( x );
	}

} // end namespace core

} // end namespace irr


#ifndef IRRLICHT_FAST_MATH
	using irr::core::IR;
	using irr::core::FR;
#endif

#endif

Options Liens officiels Caractéristiques Statistiques Communauté
Corrections
irrlicht
irrklang
irredit
irrxml
xhtml 1.0
css 2.1
Propulsé par FluxBB
Traduit par FluxBB.fr
882 membres
1429 sujets
11119 messages
Dernier membre inscrit: LiseBuisson96
54 invités en ligne
Aucun membre connecté
RSS Feed