Retour
Version Originale

./aip/1.8aipmod/include/quaternion.h :


// Copyright (C) 2002-2011 Nikolaus Gebhardt

// This file is part of the "Irrlicht Engine".

// For conditions of distribution and use, see copyright notice in irrlicht.h


#ifndef __IRR_QUATERNION_H_INCLUDED__
#define __IRR_QUATERNION_H_INCLUDED__

#include "irrTypes.h"
#include "irrMath.h"
#include "matrix4.h"
#include "vector3d.h"

namespace irr
{
namespace core
{

//! Quaternion class for representing rotations.

/** It provides cheap combinations and avoids gimbal locks.
Also useful for interpolations. */
class quaternion
{
	public:

		//! Default Constructor

		quaternion() : X(0.0f), Y(0.0f), Z(0.0f), W(1.0f) {}

		//! Constructor

		quaternion(f32 x, f32 y, f32 z, f32 w) : X(x), Y(y), Z(z), W(w) { }

		//! Constructor which converts euler angles (radians) to a quaternion

		quaternion(f32 x, f32 y, f32 z);

		//! Constructor which converts euler angles (radians) to a quaternion

		quaternion(const vector3df& vec);

		//! Constructor which converts a matrix to a quaternion

		quaternion(const matrix4& mat);

		//! Equalilty operator

		bool operator==(const quaternion& other) const;

		//! inequality operator

		bool operator!=(const quaternion& other) const;

		//! Assignment operator

		inline quaternion& operator=(const quaternion& other);

		//! Matrix assignment operator

		inline quaternion& operator=(const matrix4& other);

		//! Add operator

		quaternion operator+(const quaternion& other) const;

		//! Multiplication operator

		quaternion operator*(const quaternion& other) const;

		//! Multiplication operator with scalar

		quaternion operator*(f32 s) const;

		//! Multiplication operator with scalar

		quaternion& operator*=(f32 s);

		//! Multiplication operator

		vector3df operator*(const vector3df& v) const;

		//! Multiplication operator

		quaternion& operator*=(const quaternion& other);

		//! Calculates the dot product

		inline f32 dotProduct(const quaternion& other) const;

		//! Sets new quaternion

		inline quaternion& set(f32 x, f32 y, f32 z, f32 w);

		//! Sets new quaternion based on euler angles (radians)

		inline quaternion& set(f32 x, f32 y, f32 z);

		//! Sets new quaternion based on euler angles (radians)

		inline quaternion& set(const core::vector3df& vec);

		//! Sets new quaternion from other quaternion

		inline quaternion& set(const core::quaternion& quat);

		//! returns if this quaternion equals the other one, taking floating point rounding errors into account

		inline bool equals(const quaternion& other,
				const f32 tolerance = ROUNDING_ERROR_f32 ) const;

		//! Normalizes the quaternion

		inline quaternion& normalize();

		//! Creates a matrix from this quaternion

		matrix4 getMatrix() const;

		//! Creates a matrix from this quaternion

		void getMatrix( matrix4 &dest, const core::vector3df &translation ) const;

		/*!
			Creates a matrix from this quaternion
			Rotate about a center point
			shortcut for
			core::quaternion q;
			q.rotationFromTo ( vin[i].Normal, forward );
			q.getMatrixCenter ( lookat, center, newPos );

			core::matrix4 m2;
			m2.setInverseTranslation ( center );
			lookat *= m2;

			core::matrix4 m3;
			m2.setTranslation ( newPos );
			lookat *= m3;

		*/
		void getMatrixCenter( matrix4 &dest, const core::vector3df &center, const core::vector3df &translation ) const;

		//! Creates a matrix from this quaternion

		inline void getMatrix_transposed( matrix4 &dest ) const;

		//! Inverts this quaternion

		quaternion& makeInverse();

		//! Set this quaternion to the result of the interpolation between two quaternions

		quaternion& slerp( quaternion q1, quaternion q2, f32 interpolate );

		//! Create quaternion from rotation angle and rotation axis.

		/** Axis must be unit length.
		The quaternion representing the rotation is
		q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k).
		\param angle Rotation Angle in radians.
		\param axis Rotation axis. */
		quaternion& fromAngleAxis (f32 angle, const vector3df& axis);

		//! Fills an angle (radians) around an axis (unit vector)

		void toAngleAxis (f32 &angle, core::vector3df& axis) const;

		//! Output this quaternion to an euler angle (radians)

		void toEuler(vector3df& euler) const;

		//! Set quaternion to identity

		quaternion& makeIdentity();

		//! Set quaternion to represent a rotation from one vector to another.

		quaternion& rotationFromTo(const vector3df& from, const vector3df& to);

		//! Quaternion elements.

		f32 X; // vectorial (imaginary) part

		f32 Y;
		f32 Z;
		f32 W; // real part

};


// Constructor which converts euler angles to a quaternion

inline quaternion::quaternion(f32 x, f32 y, f32 z)
{
	set(x,y,z);
}


// Constructor which converts euler angles to a quaternion

inline quaternion::quaternion(const vector3df& vec)
{
	set(vec.X,vec.Y,vec.Z);
}


// Constructor which converts a matrix to a quaternion

inline quaternion::quaternion(const matrix4& mat)
{
	(*this) = mat;
}


// equal operator

inline bool quaternion::operator==(const quaternion& other) const
{
	return ((X == other.X) &&
		(Y == other.Y) &&
		(Z == other.Z) &&
		(W == other.W));
}

// inequality operator

inline bool quaternion::operator!=(const quaternion& other) const
{
	return !(*this == other);
}

// assignment operator

inline quaternion& quaternion::operator=(const quaternion& other)
{
	X = other.X;
	Y = other.Y;
	Z = other.Z;
	W = other.W;
	return *this;
}


// matrix assignment operator

inline quaternion& quaternion::operator=(const matrix4& m)
{
	const f32 diag = m(0,0) + m(1,1) + m(2,2) + 1;

	if( diag > 0.0f )
	{
		const f32 scale = sqrtf(diag) * 2.0f; // get scale from diagonal


		// TODO: speed this up

		X = ( m(2,1) - m(1,2)) / scale;
		Y = ( m(0,2) - m(2,0)) / scale;
		Z = ( m(1,0) - m(0,1)) / scale;
		W = 0.25f * scale;
	}
	else
	{
		if ( m(0,0) > m(1,1) && m(0,0) > m(2,2))
		{
			// 1st element of diag is greatest value

			// find scale according to 1st element, and double it

			const f32 scale = sqrtf( 1.0f + m(0,0) - m(1,1) - m(2,2)) * 2.0f;

			// TODO: speed this up

			X = 0.25f * scale;
			Y = (m(0,1) + m(1,0)) / scale;
			Z = (m(2,0) + m(0,2)) / scale;
			W = (m(2,1) - m(1,2)) / scale;
		}
		else if ( m(1,1) > m(2,2))
		{
			// 2nd element of diag is greatest value

			// find scale according to 2nd element, and double it

			const f32 scale = sqrtf( 1.0f + m(1,1) - m(0,0) - m(2,2)) * 2.0f;

			// TODO: speed this up

			X = (m(0,1) + m(1,0) ) / scale;
			Y = 0.25f * scale;
			Z = (m(1,2) + m(2,1) ) / scale;
			W = (m(0,2) - m(2,0) ) / scale;
		}
		else
		{
			// 3rd element of diag is greatest value

			// find scale according to 3rd element, and double it

			const f32 scale = sqrtf( 1.0f + m(2,2) - m(0,0) - m(1,1)) * 2.0f;

			// TODO: speed this up

			X = (m(0,2) + m(2,0)) / scale;
			Y = (m(1,2) + m(2,1)) / scale;
			Z = 0.25f * scale;
			W = (m(1,0) - m(0,1)) / scale;
		}
	}

	return normalize();
}


// multiplication operator

inline quaternion quaternion::operator*(const quaternion& other) const
{
	quaternion tmp;

	tmp.W = (other.W * W) - (other.X * X) - (other.Y * Y) - (other.Z * Z);
	tmp.X = (other.W * X) + (other.X * W) + (other.Y * Z) - (other.Z * Y);
	tmp.Y = (other.W * Y) + (other.Y * W) + (other.Z * X) - (other.X * Z);
	tmp.Z = (other.W * Z) + (other.Z * W) + (other.X * Y) - (other.Y * X);

	return tmp;
}


// multiplication operator

inline quaternion quaternion::operator*(f32 s) const
{
	return quaternion(s*X, s*Y, s*Z, s*W);
}

// multiplication operator

inline quaternion& quaternion::operator*=(f32 s)
{
	X*=s;
	Y*=s;
	Z*=s;
	W*=s;
	return *this;
}

// multiplication operator

inline quaternion& quaternion::operator*=(const quaternion& other)
{
	return (*this = other * (*this));
}

// add operator

inline quaternion quaternion::operator+(const quaternion& b) const
{
	return quaternion(X+b.X, Y+b.Y, Z+b.Z, W+b.W);
}


// Creates a matrix from this quaternion

inline matrix4 quaternion::getMatrix() const
{
	core::matrix4 m;
	getMatrix_transposed(m);
	return m;
}


/*!
	Creates a matrix from this quaternion
*/
inline void quaternion::getMatrix( matrix4 &dest, const core::vector3df &center ) const
{
	f32 * m = dest.pointer();

	m[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z;
	m[1] = 2.0f*X*Y + 2.0f*Z*W;
	m[2] = 2.0f*X*Z - 2.0f*Y*W;
	m[3] = 0.0f;

	m[4] = 2.0f*X*Y - 2.0f*Z*W;
	m[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z;
	m[6] = 2.0f*Z*Y + 2.0f*X*W;
	m[7] = 0.0f;

	m[8] = 2.0f*X*Z + 2.0f*Y*W;
	m[9] = 2.0f*Z*Y - 2.0f*X*W;
	m[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y;
	m[11] = 0.0f;

	m[12] = center.X;
	m[13] = center.Y;
	m[14] = center.Z;
	m[15] = 1.f;

	//dest.setDefinitelyIdentityMatrix ( matrix4::BIT_IS_NOT_IDENTITY );

	dest.setDefinitelyIdentityMatrix ( false );
}



/*!
	Creates a matrix from this quaternion
	Rotate about a center point
	shortcut for
	core::quaternion q;
	q.rotationFromTo ( vin[i].Normal, forward );
	q.getMatrix ( lookat, center );

	core::matrix4 m2;
	m2.setInverseTranslation ( center );
	lookat *= m2;
*/
inline void quaternion::getMatrixCenter(matrix4 &dest,
					const core::vector3df &center,
					const core::vector3df &translation) const
{
	f32 * m = dest.pointer();

	m[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z;
	m[1] = 2.0f*X*Y + 2.0f*Z*W;
	m[2] = 2.0f*X*Z - 2.0f*Y*W;
	m[3] = 0.0f;

	m[4] = 2.0f*X*Y - 2.0f*Z*W;
	m[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z;
	m[6] = 2.0f*Z*Y + 2.0f*X*W;
	m[7] = 0.0f;

	m[8] = 2.0f*X*Z + 2.0f*Y*W;
	m[9] = 2.0f*Z*Y - 2.0f*X*W;
	m[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y;
	m[11] = 0.0f;

	dest.setRotationCenter ( center, translation );
}

// Creates a matrix from this quaternion

inline void quaternion::getMatrix_transposed( matrix4 &dest ) const
{
	dest[0] = 1.0f - 2.0f*Y*Y - 2.0f*Z*Z;
	dest[4] = 2.0f*X*Y + 2.0f*Z*W;
	dest[8] = 2.0f*X*Z - 2.0f*Y*W;
	dest[12] = 0.0f;

	dest[1] = 2.0f*X*Y - 2.0f*Z*W;
	dest[5] = 1.0f - 2.0f*X*X - 2.0f*Z*Z;
	dest[9] = 2.0f*Z*Y + 2.0f*X*W;
	dest[13] = 0.0f;

	dest[2] = 2.0f*X*Z + 2.0f*Y*W;
	dest[6] = 2.0f*Z*Y - 2.0f*X*W;
	dest[10] = 1.0f - 2.0f*X*X - 2.0f*Y*Y;
	dest[14] = 0.0f;

	dest[3] = 0.f;
	dest[7] = 0.f;
	dest[11] = 0.f;
	dest[15] = 1.f;
	//dest.setDefinitelyIdentityMatrix ( matrix4::BIT_IS_NOT_IDENTITY );

	dest.setDefinitelyIdentityMatrix ( false );
}



// Inverts this quaternion

inline quaternion& quaternion::makeInverse()
{
	X = -X; Y = -Y; Z = -Z;
	return *this;
}

// sets new quaternion

inline quaternion& quaternion::set(f32 x, f32 y, f32 z, f32 w)
{
	X = x;
	Y = y;
	Z = z;
	W = w;
	return *this;
}


// sets new quaternion based on euler angles

inline quaternion& quaternion::set(f32 x, f32 y, f32 z)
{
	f64 angle;

	angle = x * 0.5;
	const f64 sr = sin(angle);
	const f64 cr = cos(angle);

	angle = y * 0.5;
	const f64 sp = sin(angle);
	const f64 cp = cos(angle);

	angle = z * 0.5;
	const f64 sy = sin(angle);
	const f64 cy = cos(angle);

	const f64 cpcy = cp * cy;
	const f64 spcy = sp * cy;
	const f64 cpsy = cp * sy;
	const f64 spsy = sp * sy;

	X = (f32)(sr * cpcy - cr * spsy);
	Y = (f32)(cr * spcy + sr * cpsy);
	Z = (f32)(cr * cpsy - sr * spcy);
	W = (f32)(cr * cpcy + sr * spsy);

	return normalize();
}

// sets new quaternion based on euler angles

inline quaternion& quaternion::set(const core::vector3df& vec)
{
	return set(vec.X, vec.Y, vec.Z);
}

// sets new quaternion based on other quaternion

inline quaternion& quaternion::set(const core::quaternion& quat)
{
	return (*this=quat);
}


//! returns if this quaternion equals the other one, taking floating point rounding errors into account

inline bool quaternion::equals(const quaternion& other, const f32 tolerance) const
{
	return core::equals(X, other.X, tolerance) &&
		core::equals(Y, other.Y, tolerance) &&
		core::equals(Z, other.Z, tolerance) &&
		core::equals(W, other.W, tolerance);
}


// normalizes the quaternion

inline quaternion& quaternion::normalize()
{
	const f32 n = X*X + Y*Y + Z*Z + W*W;

	if (n == 1)
		return *this;

	//n = 1.0f / sqrtf(n);

	return (*this *= reciprocal_squareroot ( n ));
}


// set this quaternion to the result of the interpolation between two quaternions

inline quaternion& quaternion::slerp(quaternion q1, quaternion q2, f32 time)
{
	f32 angle = q1.dotProduct(q2);

	if (angle < 0.0f)
	{
		q1 *= -1.0f;
		angle *= -1.0f;
	}

	f32 scale;
	f32 invscale;

	if ((angle + 1.0f) > 0.05f)
	{
		if ((1.0f - angle) >= 0.05f) // spherical interpolation

		{
			const f32 theta = acosf(angle);
			const f32 invsintheta = reciprocal(sinf(theta));
			scale = sinf(theta * (1.0f-time)) * invsintheta;
			invscale = sinf(theta * time) * invsintheta;
		}
		else // linear interploation

		{
			scale = 1.0f - time;
			invscale = time;
		}
	}
	else
	{
		q2.set(-q1.Y, q1.X, -q1.W, q1.Z);
		scale = sinf(PI * (0.5f - time));
		invscale = sinf(PI * time);
	}

	return (*this = (q1*scale) + (q2*invscale));
}


// calculates the dot product

inline f32 quaternion::dotProduct(const quaternion& q2) const
{
	return (X * q2.X) + (Y * q2.Y) + (Z * q2.Z) + (W * q2.W);
}


//! axis must be unit length

//! angle in radians

inline quaternion& quaternion::fromAngleAxis(f32 angle, const vector3df& axis)
{
	const f32 fHalfAngle = 0.5f*angle;
	const f32 fSin = sinf(fHalfAngle);
	W = cosf(fHalfAngle);
	X = fSin*axis.X;
	Y = fSin*axis.Y;
	Z = fSin*axis.Z;
	return *this;
}


inline void quaternion::toAngleAxis(f32 &angle, core::vector3df &axis) const
{
	const f32 scale = sqrtf(X*X + Y*Y + Z*Z);

	if (core::iszero(scale) || W > 1.0f || W < -1.0f)
	{
		angle = 0.0f;
		axis.X = 0.0f;
		axis.Y = 1.0f;
		axis.Z = 0.0f;
	}
	else
	{
		const f32 invscale = reciprocal(scale);
		angle = 2.0f * acosf(W);
		axis.X = X * invscale;
		axis.Y = Y * invscale;
		axis.Z = Z * invscale;
	}
}

inline void quaternion::toEuler(vector3df& euler) const
{
	const f64 sqw = W*W;
	const f64 sqx = X*X;
	const f64 sqy = Y*Y;
	const f64 sqz = Z*Z;

	// heading = rotation about z-axis

	euler.Z = (f32) (atan2(2.0 * (X*Y +Z*W),(sqx - sqy - sqz + sqw)));

	// bank = rotation about x-axis

	euler.X = (f32) (atan2(2.0 * (Y*Z +X*W),(-sqx - sqy + sqz + sqw)));

	// attitude = rotation about y-axis

	euler.Y = asinf( clamp(-2.0f * (X*Z - Y*W), -1.0f, 1.0f) );
}


inline vector3df quaternion::operator* (const vector3df& v) const
{
	// nVidia SDK implementation


	vector3df uv, uuv;
	vector3df qvec(X, Y, Z);
	uv = qvec.crossProduct(v);
	uuv = qvec.crossProduct(uv);
	uv *= (2.0f * W);
	uuv *= 2.0f;

	return v + uv + uuv;
}

// set quaternion to identity

inline core::quaternion& quaternion::makeIdentity()
{
	W = 1.f;
	X = 0.f;
	Y = 0.f;
	Z = 0.f;
	return *this;
}

inline core::quaternion& quaternion::rotationFromTo(const vector3df& from, const vector3df& to)
{
	// Based on Stan Melax's article in Game Programming Gems

	// Copy, since cannot modify local

	vector3df v0 = from;
	vector3df v1 = to;
	v0.normalize();
	v1.normalize();

	const f32 d = v0.dotProduct(v1);
	if (d >= 1.0f) // If dot == 1, vectors are the same

	{
		return makeIdentity();
	}
	else if (d <= -1.0f) // exactly opposite

	{
		core::vector3df axis(1.0f, 0.f, 0.f);
		axis = axis.crossProduct(core::vector3df(X,Y,Z));
		if (axis.getLength()==0)
		{
			axis.set(0.f,1.f,0.f);
			axis.crossProduct(core::vector3df(X,Y,Z));
		}
		return this->fromAngleAxis(core::PI, axis);
	}

	const f32 s = sqrtf( (1+d)*2 ); // optimize inv_sqrt

	const f32 invs = 1.f / s;
	const vector3df c = v0.crossProduct(v1)*invs;
	X = c.X;
	Y = c.Y;
	Z = c.Z;
	W = s * 0.5f;

	return *this;
}


} // end namespace core

} // end namespace irr


#endif

Options Liens officiels Caractéristiques Statistiques Communauté
Corrections
irrlicht
irrklang
irredit
irrxml
xhtml 1.0
css 2.1
Propulsé par FluxBB
Traduit par FluxBB.fr
882 membres
1429 sujets
11119 messages
Dernier membre inscrit: LiseBuisson96
33 invités en ligne
Aucun membre connecté
RSS Feed