// Copyright (C) 2002-2011 Nikolaus Gebhardt // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "COpenGLDriver.h" // needed here also because of the create methods' parameters #include "CNullDriver.h" #ifdef _IRR_COMPILE_WITH_OPENGL_ #include "COpenGLTexture.h" #include "COpenGLMaterialRenderer.h" #include "COpenGLShaderMaterialRenderer.h" #include "COpenGLSLMaterialRenderer.h" #include "COpenGLNormalMapRenderer.h" #include "COpenGLParallaxMapRenderer.h" #include "CImage.h" #include "os.h" #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ #include <SDL/SDL.h> #endif namespace irr { namespace video { // ----------------------------------------------------------------------- // WINDOWS CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_ //! Windows constructor and init code COpenGLDriver::COpenGLDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceWin32* device) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), HDc(0), Window(static_cast<HWND>(params.WindowId)), Device(device), DeviceType(EIDT_WIN32) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif } bool COpenGLDriver::changeRenderContext(const SExposedVideoData& videoData, CIrrDeviceWin32* device) { if (videoData.OpenGLWin32.HWnd && videoData.OpenGLWin32.HDc && videoData.OpenGLWin32.HRc) { if (!wglMakeCurrent((HDC)videoData.OpenGLWin32.HDc, (HGLRC)videoData.OpenGLWin32.HRc)) { os::Printer::log("Render Context switch failed."); return false; } else { HDc = (HDC)videoData.OpenGLWin32.HDc; } } // set back to main context else if (HDc != ExposedData.OpenGLWin32.HDc) { if (!wglMakeCurrent((HDC)ExposedData.OpenGLWin32.HDc, (HGLRC)ExposedData.OpenGLWin32.HRc)) { os::Printer::log("Render Context switch failed."); return false; } else { HDc = (HDC)ExposedData.OpenGLWin32.HDc; } } return true; } //! inits the open gl driver bool COpenGLDriver::initDriver(irr::SIrrlichtCreationParameters params, CIrrDeviceWin32* device) { // Create a window to test antialiasing support const fschar_t* ClassName = __TEXT("GLCIrrDeviceWin32"); HINSTANCE lhInstance = GetModuleHandle(0); // Register Class WNDCLASSEX wcex; wcex.cbSize = sizeof(WNDCLASSEX); wcex.style = CS_HREDRAW | CS_VREDRAW; wcex.lpfnWndProc = (WNDPROC)DefWindowProc; wcex.cbClsExtra = 0; wcex.cbWndExtra = 0; wcex.hInstance = lhInstance; wcex.hIcon = NULL; wcex.hCursor = LoadCursor(NULL, IDC_ARROW); wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); wcex.lpszMenuName = 0; wcex.lpszClassName = ClassName; wcex.hIconSm = 0; wcex.hIcon = 0; RegisterClassEx(&wcex); RECT clientSize; clientSize.top = 0; clientSize.left = 0; clientSize.right = params.WindowSize.Width; clientSize.bottom = params.WindowSize.Height; DWORD style = WS_POPUP; if (!params.Fullscreen) style = WS_SYSMENU | WS_BORDER | WS_CAPTION | WS_CLIPCHILDREN | WS_CLIPSIBLINGS; AdjustWindowRect(&clientSize, style, FALSE); const s32 realWidth = clientSize.right - clientSize.left; const s32 realHeight = clientSize.bottom - clientSize.top; const s32 windowLeft = (GetSystemMetrics(SM_CXSCREEN) - realWidth) / 2; const s32 windowTop = (GetSystemMetrics(SM_CYSCREEN) - realHeight) / 2; HWND temporary_wnd=CreateWindow(ClassName, __TEXT(""), style, windowLeft, windowTop, realWidth, realHeight, NULL, NULL, lhInstance, NULL); if (!temporary_wnd) { os::Printer::log("Cannot create a temporary window.", ELL_ERROR); UnregisterClass(ClassName, lhInstance); return false; } HDc = GetDC(temporary_wnd); // Set up pixel format descriptor with desired parameters PIXELFORMATDESCRIPTOR pfd = { sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor 1, // Version Number PFD_DRAW_TO_WINDOW | // Format Must Support Window PFD_SUPPORT_OPENGL | // Format Must Support OpenGL (params.Doublebuffer?PFD_DOUBLEBUFFER:0) | // Must Support Double Buffering (params.Stereobuffer?PFD_STEREO:0), // Must Support Stereo Buffer PFD_TYPE_RGBA, // Request An RGBA Format params.Bits, // Select Our Color Depth 0, 0, 0, 0, 0, 0, // Color Bits Ignored 0, // No Alpha Buffer 0, // Shift Bit Ignored 0, // No Accumulation Buffer 0, 0, 0, 0, // Accumulation Bits Ignored params.ZBufferBits, // Z-Buffer (Depth Buffer) params.Stencilbuffer ? 1 : 0, // Stencil Buffer Depth 0, // No Auxiliary Buffer PFD_MAIN_PLANE, // Main Drawing Layer 0, // Reserved 0, 0, 0 // Layer Masks Ignored }; GLuint PixelFormat; for (u32 i=0; i<6; ++i) { if (i == 1) { if (params.Stencilbuffer) { os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING); params.Stencilbuffer = false; pfd.cStencilBits = 0; } else continue; } else if (i == 2) { pfd.cDepthBits = 24; } if (i == 3) { if (params.Bits!=16) pfd.cDepthBits = 16; else continue; } else if (i == 4) { // try single buffer if (params.Doublebuffer) pfd.dwFlags &= ~PFD_DOUBLEBUFFER; else continue; } else if (i == 5) { os::Printer::log("Cannot create a GL device context", "No suitable format for temporary window.", ELL_ERROR); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); UnregisterClass(ClassName, lhInstance); return false; } // choose pixelformat PixelFormat = ChoosePixelFormat(HDc, &pfd); if (PixelFormat) break; } SetPixelFormat(HDc, PixelFormat, &pfd); HGLRC hrc=wglCreateContext(HDc); if (!hrc) { os::Printer::log("Cannot create a temporary GL rendering context.", ELL_ERROR); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); UnregisterClass(ClassName, lhInstance); return false; } SExposedVideoData data; data.OpenGLWin32.HDc = HDc; data.OpenGLWin32.HRc = hrc; data.OpenGLWin32.HWnd = temporary_wnd; if (!changeRenderContext(data, device)) { os::Printer::log("Cannot activate a temporary GL rendering context.", ELL_ERROR); wglDeleteContext(hrc); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); UnregisterClass(ClassName, lhInstance); return false; } io::path wglExtensions; #ifdef WGL_ARB_extensions_string PFNWGLGETEXTENSIONSSTRINGARBPROC irrGetExtensionsString = (PFNWGLGETEXTENSIONSSTRINGARBPROC)wglGetProcAddress("wglGetExtensionsStringARB"); if (irrGetExtensionsString) wglExtensions = irrGetExtensionsString(HDc); #elif defined(WGL_EXT_extensions_string) PFNWGLGETEXTENSIONSSTRINGEXTPROC irrGetExtensionsString = (PFNWGLGETEXTENSIONSSTRINGEXTPROC)wglGetProcAddress("wglGetExtensionsStringEXT"); if (irrGetExtensionsString) wglExtensions = irrGetExtensionsString(HDc); #endif const bool pixel_format_supported = (wglExtensions.find("WGL_ARB_pixel_format") != -1); const bool multi_sample_supported = ((wglExtensions.find("WGL_ARB_multisample") != -1) || (wglExtensions.find("WGL_EXT_multisample") != -1) || (wglExtensions.find("WGL_3DFX_multisample") != -1) ); #ifdef _DEBUG os::Printer::log("WGL_extensions", wglExtensions); #endif #ifdef WGL_ARB_pixel_format PFNWGLCHOOSEPIXELFORMATARBPROC wglChoosePixelFormat_ARB = (PFNWGLCHOOSEPIXELFORMATARBPROC)wglGetProcAddress("wglChoosePixelFormatARB"); if (pixel_format_supported && multi_sample_supported && wglChoosePixelFormat_ARB) { // This value determines the number of samples used for antialiasing // My experience is that 8 does not show a big // improvement over 4, but 4 shows a big improvement // over 2. if(AntiAlias > 32) AntiAlias = 32; f32 fAttributes[] = {0.0, 0.0}; s32 iAttributes[] = { WGL_DRAW_TO_WINDOW_ARB,GL_TRUE, WGL_SUPPORT_OPENGL_ARB,GL_TRUE, WGL_ACCELERATION_ARB,WGL_FULL_ACCELERATION_ARB, WGL_COLOR_BITS_ARB,(params.Bits==32) ? 24 : 15, WGL_ALPHA_BITS_ARB,(params.Bits==32) ? 8 : 1, WGL_DEPTH_BITS_ARB,params.ZBufferBits, // 10,11 WGL_STENCIL_BITS_ARB,(params.Stencilbuffer) ? 1 : 0, WGL_DOUBLE_BUFFER_ARB,(params.Doublebuffer) ? GL_TRUE : GL_FALSE, WGL_STEREO_ARB,(params.Stereobuffer) ? GL_TRUE : GL_FALSE, #ifdef WGL_ARB_multisample WGL_SAMPLE_BUFFERS_ARB, 1, WGL_SAMPLES_ARB,AntiAlias, // 20,21 #elif defined(WGL_EXT_multisample) WGL_SAMPLE_BUFFERS_EXT, 1, WGL_SAMPLES_EXT,AntiAlias, // 20,21 #elif defined(WGL_3DFX_multisample) WGL_SAMPLE_BUFFERS_3DFX, 1, WGL_SAMPLES_3DFX,AntiAlias, // 20,21 #endif WGL_PIXEL_TYPE_ARB, WGL_TYPE_RGBA_ARB, // other possible values: // WGL_ARB_pixel_format_float: WGL_TYPE_RGBA_FLOAT_ARB // WGL_EXT_pixel_format_packed_float: WGL_TYPE_RGBA_UNSIGNED_FLOAT_EXT #if 0 #ifdef WGL_EXT_framebuffer_sRGB WGL_FRAMEBUFFER_SRGB_CAPABLE_EXT, GL_FALSE, #endif #endif 0,0 }; s32 rv=0; // Try to get an acceptable pixel format while(rv==0 && iAttributes[21]>1) { s32 pixelFormat=0; u32 numFormats=0; const s32 valid = wglChoosePixelFormat_ARB(HDc,iAttributes,fAttributes,1,&pixelFormat,&numFormats); if (valid && numFormats>0) rv = pixelFormat; else iAttributes[21] -= 1; } if (rv) { PixelFormat=rv; AntiAlias=iAttributes[21]; } } else #endif AntiAlias=0; wglMakeCurrent(HDc, NULL); wglDeleteContext(hrc); ReleaseDC(temporary_wnd, HDc); DestroyWindow(temporary_wnd); UnregisterClass(ClassName, lhInstance); // get hdc HDc=GetDC(Window); if (!HDc) { os::Printer::log("Cannot create a GL device context.", ELL_ERROR); return false; } // search for pixel format the simple way if (AntiAlias < 2) { for (u32 i=0; i<5; ++i) { if (i == 1) { if (params.Stencilbuffer) { os::Printer::log("Cannot create a GL device with stencil buffer, disabling stencil shadows.", ELL_WARNING); params.Stencilbuffer = false; pfd.cStencilBits = 0; } else continue; } else if (i == 2) { pfd.cDepthBits = 24; } if (i == 3) { if (params.Bits!=16) pfd.cDepthBits = 16; else continue; } else if (i == 4) { os::Printer::log("Cannot create a GL device context", "No suitable format.", ELL_ERROR); return false; } // choose pixelformat PixelFormat = ChoosePixelFormat(HDc, &pfd); if (PixelFormat) break; } } // set pixel format if (!SetPixelFormat(HDc, PixelFormat, &pfd)) { os::Printer::log("Cannot set the pixel format.", ELL_ERROR); return false; } // create rendering context #ifdef WGL_ARB_create_context PFNWGLCREATECONTEXTATTRIBSARBPROC wglCreateContextAttribs_ARB = (PFNWGLCREATECONTEXTATTRIBSARBPROC)wglGetProcAddress("wglCreateContextAttribsARB"); if (wglCreateContextAttribs_ARB) { int iAttribs[] = { WGL_CONTEXT_MAJOR_VERSION_ARB, 3, WGL_CONTEXT_MINOR_VERSION_ARB, 1, 0 }; hrc=wglCreateContextAttribs_ARB(HDc, 0, iAttribs); } else #endif hrc=wglCreateContext(HDc); if (!hrc) { os::Printer::log("Cannot create a GL rendering context.", ELL_ERROR); return false; } // set exposed data ExposedData.OpenGLWin32.HDc = HDc; ExposedData.OpenGLWin32.HRc = hrc; ExposedData.OpenGLWin32.HWnd = Window; // activate rendering context if (!changeRenderContext(ExposedData, device)) { os::Printer::log("Cannot activate GL rendering context", ELL_ERROR); wglDeleteContext(hrc); return false; } int pf = GetPixelFormat(HDc); DescribePixelFormat(HDc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd); if (pfd.cAlphaBits != 0) { if (pfd.cRedBits == 8) ColorFormat = ECF_A8R8G8B8; else ColorFormat = ECF_A1R5G5B5; } else { if (pfd.cRedBits == 8) ColorFormat = ECF_R8G8B8; else ColorFormat = ECF_R5G6B5; } genericDriverInit(params.WindowSize, params.Stencilbuffer); #ifdef WGL_EXT_swap_control PFNWGLSWAPINTERVALEXTPROC wglSwapIntervalEXT; // vsync extension wglSwapIntervalEXT = (PFNWGLSWAPINTERVALEXTPROC)wglGetProcAddress("wglSwapIntervalEXT"); // set vsync if (wglSwapIntervalEXT) wglSwapIntervalEXT(params.Vsync ? 1 : 0); #endif return true; } #endif // _IRR_COMPILE_WITH_WINDOWS_DEVICE_ // ----------------------------------------------------------------------- // MacOSX CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_COMPILE_WITH_OSX_DEVICE_ //! Windows constructor and init code COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceMacOSX *device) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), Device(device), DeviceType(EIDT_OSX) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif genericDriverInit(params.WindowSize, params.Stencilbuffer); } #endif // ----------------------------------------------------------------------- // LINUX CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_COMPILE_WITH_X11_DEVICE_ //! Linux constructor and init code COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceLinux* device) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), Device(device), DeviceType(EIDT_X11) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif } bool COpenGLDriver::changeRenderContext(const SExposedVideoData& videoData, CIrrDeviceLinux* device) { if (videoData.OpenGLLinux.X11Display && videoData.OpenGLLinux.X11Window && videoData.OpenGLLinux.X11Context) { if (!glXMakeCurrent((Display*)videoData.OpenGLLinux.X11Display, videoData.OpenGLLinux.X11Window, (GLXContext)videoData.OpenGLLinux.X11Context)) { os::Printer::log("Render Context switch failed."); return false; } else { Drawable = videoData.OpenGLLinux.X11Window; X11Display = (Display*)videoData.OpenGLLinux.X11Display; } } // set back to main context else if (X11Display != ExposedData.OpenGLLinux.X11Display) { if (!glXMakeCurrent((Display*)ExposedData.OpenGLLinux.X11Display, ExposedData.OpenGLLinux.X11Window, (GLXContext)ExposedData.OpenGLLinux.X11Context)) { os::Printer::log("Render Context switch failed."); return false; } else { Drawable = ExposedData.OpenGLLinux.X11Window; X11Display = (Display*)ExposedData.OpenGLLinux.X11Display; } } return true; } //! inits the open gl driver bool COpenGLDriver::initDriver(irr::SIrrlichtCreationParameters params, CIrrDeviceLinux* device) { ExposedData.OpenGLLinux.X11Context = glXGetCurrentContext(); ExposedData.OpenGLLinux.X11Display = glXGetCurrentDisplay(); ExposedData.OpenGLLinux.X11Window = (unsigned long)params.WindowId; Drawable = glXGetCurrentDrawable(); X11Display = (Display*)ExposedData.OpenGLLinux.X11Display; genericDriverInit(params.WindowSize, params.Stencilbuffer); // set vsync //TODO: Check GLX_EXT_swap_control and GLX_MESA_swap_control #ifdef GLX_SGI_swap_control #ifdef _IRR_OPENGL_USE_EXTPOINTER_ if (params.Vsync && glxSwapIntervalSGI) glxSwapIntervalSGI(1); #else if (params.Vsync) glXSwapIntervalSGI(1); #endif #endif return true; } #endif // _IRR_COMPILE_WITH_X11_DEVICE_ // ----------------------------------------------------------------------- // SDL CONSTRUCTOR // ----------------------------------------------------------------------- #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ //! SDL constructor and init code COpenGLDriver::COpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceSDL* device) : CNullDriver(io, params.WindowSize), COpenGLExtensionHandler(), CurrentRenderMode(ERM_NONE), ResetRenderStates(true), Transformation3DChanged(true), AntiAlias(params.AntiAlias), RenderTargetTexture(0), CurrentRendertargetSize(0,0), ColorFormat(ECF_R8G8B8), CurrentTarget(ERT_FRAME_BUFFER), Doublebuffer(params.Doublebuffer), Stereo(params.Stereobuffer), Device(device), DeviceType(EIDT_SDL) { #ifdef _DEBUG setDebugName("COpenGLDriver"); #endif genericDriverInit(params.WindowSize, params.Stencilbuffer); } #endif // _IRR_COMPILE_WITH_SDL_DEVICE_ //! destructor COpenGLDriver::~COpenGLDriver() { RequestedLights.clear(); deleteMaterialRenders(); // I get a blue screen on my laptop, when I do not delete the // textures manually before releasing the dc. Oh how I love this. deleteAllTextures(); removeAllOcclusionQueries(); removeAllHardwareBuffers(); #ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_ if (DeviceType == EIDT_WIN32) { if (ExposedData.OpenGLWin32.HRc) { if (!wglMakeCurrent(0, 0)) os::Printer::log("Release of dc and rc failed.", ELL_WARNING); if (!wglDeleteContext((HGLRC)ExposedData.OpenGLWin32.HRc)) os::Printer::log("Release of rendering context failed.", ELL_WARNING); } if (HDc) ReleaseDC(Window, HDc); } #endif } // ----------------------------------------------------------------------- // METHODS // ----------------------------------------------------------------------- bool COpenGLDriver::genericDriverInit(const core::dimension2d<u32>& screenSize, bool stencilBuffer) { Name=L"OpenGL "; Name.append(glGetString(GL_VERSION)); s32 pos=Name.findNext(L' ', 7); if (pos != -1) Name=Name.subString(0, pos); printVersion(); // print renderer information const GLubyte* renderer = glGetString(GL_RENDERER); const GLubyte* vendor = glGetString(GL_VENDOR); if (renderer && vendor) { os::Printer::log(reinterpret_cast<const c8*>(renderer), reinterpret_cast<const c8*>(vendor), ELL_INFORMATION); VendorName = reinterpret_cast<const c8*>(vendor); } u32 i; for (i=0; i<MATERIAL_MAX_TEXTURES; ++i) CurrentTexture[i]=0; // load extensions initExtensions(stencilBuffer); if (queryFeature(EVDF_ARB_GLSL)) { char buf[32]; const u32 maj = ShaderLanguageVersion/100; snprintf(buf, 32, "%u.%u", maj, ShaderLanguageVersion-maj*100); os::Printer::log("GLSL version", buf, ELL_INFORMATION); } else os::Printer::log("GLSL not available.", ELL_INFORMATION); DriverAttributes->setAttribute("MaxTextures", MaxTextureUnits); DriverAttributes->setAttribute("MaxSupportedTextures", MaxSupportedTextures); // DriverAttributes->setAttribute("MaxLights", MaxLights); DriverAttributes->setAttribute("MaxAnisotropy", MaxAnisotropy); DriverAttributes->setAttribute("MaxUserClipPlanes", MaxUserClipPlanes); DriverAttributes->setAttribute("MaxAuxBuffers", MaxAuxBuffers); DriverAttributes->setAttribute("MaxMultipleRenderTargets", MaxMultipleRenderTargets); DriverAttributes->setAttribute("MaxIndices", (s32)MaxIndices); DriverAttributes->setAttribute("MaxTextureSize", (s32)MaxTextureSize); DriverAttributes->setAttribute("MaxGeometryVerticesOut", (s32)MaxGeometryVerticesOut); DriverAttributes->setAttribute("MaxTextureLODBias", MaxTextureLODBias); DriverAttributes->setAttribute("Version", Version); DriverAttributes->setAttribute("ShaderLanguageVersion", ShaderLanguageVersion); DriverAttributes->setAttribute("AntiAlias", AntiAlias); glPixelStorei(GL_PACK_ALIGNMENT, 1); // Reset The Current Viewport glViewport(0, 0, screenSize.Width, screenSize.Height); UserClipPlanes.reallocate(MaxUserClipPlanes); for (i=0; i<MaxUserClipPlanes; ++i) UserClipPlanes.push_back(SUserClipPlane()); for (i=0; i<ETS_COUNT; ++i) setTransform(static_cast<E_TRANSFORMATION_STATE>(i), core::IdentityMatrix); setAmbientLight(SColorf(0.0f,0.0f,0.0f,0.0f)); #ifdef GL_EXT_separate_specular_color if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); #endif glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); // This is a fast replacement for NORMALIZE_NORMALS // if ((Version>101) || FeatureAvailable[IRR_EXT_rescale_normal]) // glEnable(GL_RESCALE_NORMAL_EXT); glClearDepth(1.0); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); glHint(GL_POINT_SMOOTH_HINT, GL_FASTEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); // adjust flat coloring scheme to DirectX version #if defined(GL_ARB_provoking_vertex) || defined(GL_EXT_provoking_vertex) extGlProvokingVertex(GL_FIRST_VERTEX_CONVENTION_EXT); #endif // create material renderers createMaterialRenderers(); // set the renderstates setRenderStates3DMode(); glAlphaFunc(GL_GREATER, 0.f); // set fog mode setFog(FogColor, FogType, FogStart, FogEnd, FogDensity, PixelFog, RangeFog); // create matrix for flipping textures TextureFlipMatrix.buildTextureTransform(0.0f, core::vector2df(0,0), core::vector2df(0,1.0f), core::vector2df(1.0f,-1.0f)); // We need to reset once more at the beginning of the first rendering. // This fixes problems with intermediate changes to the material during texture load. ResetRenderStates = true; return true; } void COpenGLDriver::createMaterialRenderers() { // create OpenGL material renderers addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SOLID_2_LAYER(this)); // add the same renderer for all lightmap types COpenGLMaterialRenderer_LIGHTMAP* lmr = new COpenGLMaterialRenderer_LIGHTMAP(this); addMaterialRenderer(lmr); // for EMT_LIGHTMAP: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_ADD: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M2: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_M4: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M2: addMaterialRenderer(lmr); // for EMT_LIGHTMAP_LIGHTING_M4: lmr->drop(); // add remaining material renderer addAndDropMaterialRenderer(new COpenGLMaterialRenderer_DETAIL_MAP(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_SPHERE_MAP(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_REFLECTION_2_LAYER(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ADD_COLOR(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_ALPHA_CHANNEL_REF(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_VERTEX_ALPHA(this)); addAndDropMaterialRenderer(new COpenGLMaterialRenderer_TRANSPARENT_REFLECTION_2_LAYER(this)); // add normal map renderers s32 tmp = 0; video::IMaterialRenderer* renderer = 0; renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer); renderer->drop(); renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer); renderer->drop(); renderer = new COpenGLNormalMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer); renderer->drop(); // add parallax map renderers renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_SOLID].Renderer); renderer->drop(); renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_ADD_COLOR].Renderer); renderer->drop(); renderer = new COpenGLParallaxMapRenderer(this, tmp, MaterialRenderers[EMT_TRANSPARENT_VERTEX_ALPHA].Renderer); renderer->drop(); // add basic 1 texture blending addAndDropMaterialRenderer(new COpenGLMaterialRenderer_ONETEXTURE_BLEND(this)); } //! presents the rendered scene on the screen, returns false if failed bool COpenGLDriver::endScene() { CNullDriver::endScene(); glFlush(); #ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_ if (DeviceType == EIDT_WIN32) return SwapBuffers(HDc) == TRUE; #endif #ifdef _IRR_COMPILE_WITH_X11_DEVICE_ if (DeviceType == EIDT_X11) { glXSwapBuffers(X11Display, Drawable); return true; } #endif #ifdef _IRR_COMPILE_WITH_OSX_DEVICE_ if (DeviceType == EIDT_OSX) { Device->flush(); return true; } #endif #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ if (DeviceType == EIDT_SDL) { SDL_GL_SwapBuffers(); return true; } #endif // todo: console device present return false; } //! clears the zbuffer and color buffer void COpenGLDriver::clearBuffers(bool backBuffer, bool zBuffer, bool stencilBuffer, SColor color) { GLbitfield mask = 0; if (backBuffer) { const f32 inv = 1.0f / 255.0f; glClearColor(color.getRed() * inv, color.getGreen() * inv, color.getBlue() * inv, color.getAlpha() * inv); mask |= GL_COLOR_BUFFER_BIT; } if (zBuffer) { glDepthMask(GL_TRUE); LastMaterial.ZWriteEnable=true; mask |= GL_DEPTH_BUFFER_BIT; } if (stencilBuffer) mask |= GL_STENCIL_BUFFER_BIT; if (mask) glClear(mask); } //! init call for rendering start bool COpenGLDriver::beginScene(bool backBuffer, bool zBuffer, SColor color, const SExposedVideoData& videoData, core::rect<s32>* sourceRect) { CNullDriver::beginScene(backBuffer, zBuffer, color, videoData, sourceRect); changeRenderContext(videoData, Device); #if defined(_IRR_COMPILE_WITH_SDL_DEVICE_) if (DeviceType == EIDT_SDL) { // todo: SDL sets glFrontFace(GL_CCW) after driver creation, // it would be better if this was fixed elsewhere. glFrontFace(GL_CW); } #endif clearBuffers(backBuffer, zBuffer, false, color); return true; } //! Returns the transformation set by setTransform const core::matrix4& COpenGLDriver::getTransform(E_TRANSFORMATION_STATE state) const { return Matrices[state]; } //! sets transformation void COpenGLDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { Matrices[state] = mat; Transformation3DChanged = true; switch (state) { case ETS_VIEW: case ETS_WORLD: { // OpenGL only has a model matrix, view and world is not existent. so lets fake these two. glMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); // we have to update the clip planes to the latest view matrix for (u32 i=0; i<MaxUserClipPlanes; ++i) if (UserClipPlanes[i].Enabled) uploadClipPlane(i); } break; case ETS_PROJECTION: { glMatrixMode(GL_PROJECTION); glLoadMatrixf(mat.pointer()); // we have to update the clip planes to the latest view matrix for (u32 i=0; i<MaxUserClipPlanes; ++i) if (UserClipPlanes[i].Enabled) uploadClipPlane(i); } break; case ETS_COUNT: return; default: { const u32 i = state - ETS_TEXTURE_0; if (i >= MATERIAL_MAX_TEXTURES) break; const bool isRTT = Material.getTexture(i) && Material.getTexture(i)->isRenderTarget(); if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB + i); glMatrixMode(GL_TEXTURE); if (!isRTT && mat.isIdentity() ) glLoadIdentity(); else { GLfloat glmat[16]; if (isRTT) createGLTextureMatrix(glmat, mat * TextureFlipMatrix); else createGLTextureMatrix(glmat, mat); glLoadMatrixf(glmat); } break; } } } bool COpenGLDriver::updateVertexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; if (!FeatureAvailable[IRR_ARB_vertex_buffer_object]) return false; #if defined(GL_ARB_vertex_buffer_object) const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* vertices=mb->getVertices(); const u32 vertexCount=mb->getVertexCount(); const E_VERTEX_TYPE vType=mb->getVertexType(); const u32 vertexSize = getVertexPitchFromType(vType); const c8* vbuf = static_cast<const c8*>(vertices); core::array<c8> buffer; if (!FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) { //buffer vertex data, and convert colours... buffer.set_used(vertexSize * vertexCount); memcpy(buffer.pointer(), vertices, vertexSize * vertexCount); vbuf = buffer.const_pointer(); // in order to convert the colors into opengl format (RGBA) switch (vType) { case EVT_STANDARD: { S3DVertex* pb = reinterpret_cast<S3DVertex*>(buffer.pointer()); const S3DVertex* po = static_cast<const S3DVertex*>(vertices); for (u32 i=0; i<vertexCount; i++) { po[i].Color.toOpenGLColor((u8*)&(pb[i].Color)); } } break; case EVT_2TCOORDS: { S3DVertex2TCoords* pb = reinterpret_cast<S3DVertex2TCoords*>(buffer.pointer()); const S3DVertex2TCoords* po = static_cast<const S3DVertex2TCoords*>(vertices); for (u32 i=0; i<vertexCount; i++) { po[i].Color.toOpenGLColor((u8*)&(pb[i].Color)); } } break; case EVT_TANGENTS: { S3DVertexTangents* pb = reinterpret_cast<S3DVertexTangents*>(buffer.pointer()); const S3DVertexTangents* po = static_cast<const S3DVertexTangents*>(vertices); for (u32 i=0; i<vertexCount; i++) { po[i].Color.toOpenGLColor((u8*)&(pb[i].Color)); } } break; default: { return false; } } } //get or create buffer bool newBuffer=false; if (!HWBuffer->vbo_verticesID) { extGlGenBuffers(1, &HWBuffer->vbo_verticesID); if (!HWBuffer->vbo_verticesID) return false; newBuffer=true; } else if (HWBuffer->vbo_verticesSize < vertexCount*vertexSize) { newBuffer=true; } extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); //copy data to graphics card glGetError(); // clear error storage if (!newBuffer) extGlBufferSubData(GL_ARRAY_BUFFER, 0, vertexCount * vertexSize, vbuf); else { HWBuffer->vbo_verticesSize = vertexCount*vertexSize; if (HWBuffer->Mapped_Vertex==scene::EHM_STATIC) extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, vbuf, GL_STATIC_DRAW); else if (HWBuffer->Mapped_Vertex==scene::EHM_DYNAMIC) extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, vbuf, GL_DYNAMIC_DRAW); else //scene::EHM_STREAM extGlBufferData(GL_ARRAY_BUFFER, vertexCount * vertexSize, vbuf, GL_STREAM_DRAW); } extGlBindBuffer(GL_ARRAY_BUFFER, 0); return (glGetError() == GL_NO_ERROR); #else return false; #endif } bool COpenGLDriver::updateIndexHardwareBuffer(SHWBufferLink_opengl *HWBuffer) { if (!HWBuffer) return false; if (!FeatureAvailable[IRR_ARB_vertex_buffer_object]) return false; #if defined(GL_ARB_vertex_buffer_object) const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void* indices=mb->getIndices(); u32 indexCount= mb->getIndexCount(); GLenum indexSize; switch (mb->getIndexType()) { case EIT_16BIT: { indexSize=sizeof(u16); break; } case EIT_32BIT: { indexSize=sizeof(u32); break; } default: { return false; } } //get or create buffer bool newBuffer=false; if (!HWBuffer->vbo_indicesID) { extGlGenBuffers(1, &HWBuffer->vbo_indicesID); if (!HWBuffer->vbo_indicesID) return false; newBuffer=true; } else if (HWBuffer->vbo_indicesSize < indexCount*indexSize) { newBuffer=true; } extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); //copy data to graphics card glGetError(); // clear error storage if (!newBuffer) extGlBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, indexCount * indexSize, indices); else { HWBuffer->vbo_indicesSize = indexCount*indexSize; if (HWBuffer->Mapped_Index==scene::EHM_STATIC) extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STATIC_DRAW); else if (HWBuffer->Mapped_Index==scene::EHM_DYNAMIC) extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_DYNAMIC_DRAW); else //scene::EHM_STREAM extGlBufferData(GL_ELEMENT_ARRAY_BUFFER, indexCount * indexSize, indices, GL_STREAM_DRAW); } extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); return (glGetError() == GL_NO_ERROR); #else return false; #endif } //! updates hardware buffer if needed bool COpenGLDriver::updateHardwareBuffer(SHWBufferLink *HWBuffer) { if (!HWBuffer) return false; if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER) { if (HWBuffer->ChangedID_Vertex != HWBuffer->MeshBuffer->getChangedID_Vertex() || !((SHWBufferLink_opengl*)HWBuffer)->vbo_verticesID) { HWBuffer->ChangedID_Vertex = HWBuffer->MeshBuffer->getChangedID_Vertex(); if (!updateVertexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } if (HWBuffer->Mapped_Index!=scene::EHM_NEVER) { if (HWBuffer->ChangedID_Index != HWBuffer->MeshBuffer->getChangedID_Index() || !((SHWBufferLink_opengl*)HWBuffer)->vbo_indicesID) { HWBuffer->ChangedID_Index = HWBuffer->MeshBuffer->getChangedID_Index(); if (!updateIndexHardwareBuffer((SHWBufferLink_opengl*)HWBuffer)) return false; } } return true; } //! Create hardware buffer from meshbuffer COpenGLDriver::SHWBufferLink *COpenGLDriver::createHardwareBuffer(const scene::IMeshBuffer* mb) { #if defined(GL_ARB_vertex_buffer_object) if (!mb || (mb->getHardwareMappingHint_Index()==scene::EHM_NEVER && mb->getHardwareMappingHint_Vertex()==scene::EHM_NEVER)) return 0; SHWBufferLink_opengl *HWBuffer=new SHWBufferLink_opengl(mb); //add to map HWBufferMap.insert(HWBuffer->MeshBuffer, HWBuffer); HWBuffer->ChangedID_Vertex=HWBuffer->MeshBuffer->getChangedID_Vertex(); HWBuffer->ChangedID_Index=HWBuffer->MeshBuffer->getChangedID_Index(); HWBuffer->Mapped_Vertex=mb->getHardwareMappingHint_Vertex(); HWBuffer->Mapped_Index=mb->getHardwareMappingHint_Index(); HWBuffer->LastUsed=0; HWBuffer->vbo_verticesID=0; HWBuffer->vbo_indicesID=0; HWBuffer->vbo_verticesSize=0; HWBuffer->vbo_indicesSize=0; if (!updateHardwareBuffer(HWBuffer)) { deleteHardwareBuffer(HWBuffer); return 0; } return HWBuffer; #else return 0; #endif } void COpenGLDriver::deleteHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; #if defined(GL_ARB_vertex_buffer_object) SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer; if (HWBuffer->vbo_verticesID) { extGlDeleteBuffers(1, &HWBuffer->vbo_verticesID); HWBuffer->vbo_verticesID=0; } if (HWBuffer->vbo_indicesID) { extGlDeleteBuffers(1, &HWBuffer->vbo_indicesID); HWBuffer->vbo_indicesID=0; } #endif CNullDriver::deleteHardwareBuffer(_HWBuffer); } //! Draw hardware buffer void COpenGLDriver::drawHardwareBuffer(SHWBufferLink *_HWBuffer) { if (!_HWBuffer) return; updateHardwareBuffer(_HWBuffer); //check if update is needed _HWBuffer->LastUsed=0; //reset count #if defined(GL_ARB_vertex_buffer_object) SHWBufferLink_opengl *HWBuffer=(SHWBufferLink_opengl*)_HWBuffer; const scene::IMeshBuffer* mb = HWBuffer->MeshBuffer; const void *vertices=mb->getVertices(); const void *indexList=mb->getIndices(); if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER) { extGlBindBuffer(GL_ARRAY_BUFFER, HWBuffer->vbo_verticesID); vertices=0; } if (HWBuffer->Mapped_Index!=scene::EHM_NEVER) { extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, HWBuffer->vbo_indicesID); indexList=0; } drawVertexPrimitiveList(vertices, mb->getVertexCount(), indexList, mb->getIndexCount()/3, mb->getVertexType(), scene::EPT_TRIANGLES, mb->getIndexType()); if (HWBuffer->Mapped_Vertex!=scene::EHM_NEVER) extGlBindBuffer(GL_ARRAY_BUFFER, 0); if (HWBuffer->Mapped_Index!=scene::EHM_NEVER) extGlBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #endif } //! Create occlusion query. /** Use node for identification and mesh for occlusion test. */ void COpenGLDriver::createOcclusionQuery(scene::ISceneNode* node, const scene::IMesh* mesh) { if (!queryFeature(EVDF_OCCLUSION_QUERY)) return; CNullDriver::createOcclusionQuery(node, mesh); const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if ((index != -1) && (OcclusionQueries[index].UID == 0)) extGlGenQueries(1, &OcclusionQueries[index].UID); } //! Remove occlusion query. void COpenGLDriver::removeOcclusionQuery(scene::ISceneNode* node) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].UID != 0) extGlDeleteQueries(1, &OcclusionQueries[index].UID); CNullDriver::removeOcclusionQuery(node); } } //! Run occlusion query. Draws mesh stored in query. /** If the mesh shall not be rendered visible, use overrideMaterial to disable the color and depth buffer. */ void COpenGLDriver::runOcclusionQuery(scene::ISceneNode* node, bool visible) { if (!node) return; const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { if (OcclusionQueries[index].UID) extGlBeginQuery( #ifdef GL_ARB_occlusion_query GL_SAMPLES_PASSED_ARB, #else 0, #endif OcclusionQueries[index].UID); CNullDriver::runOcclusionQuery(node,visible); if (OcclusionQueries[index].UID) extGlEndQuery( #ifdef GL_ARB_occlusion_query GL_SAMPLES_PASSED_ARB); #else 0); #endif testGLError(); } } //! Update occlusion query. Retrieves results from GPU. /** If the query shall not block, set the flag to false. Update might not occur in this case, though */ void COpenGLDriver::updateOcclusionQuery(scene::ISceneNode* node, bool block) { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) { // not yet started if (OcclusionQueries[index].Run==u32(~0)) return; GLint available = block?GL_TRUE:GL_FALSE; if (!block) extGlGetQueryObjectiv(OcclusionQueries[index].UID, #ifdef GL_ARB_occlusion_query GL_QUERY_RESULT_AVAILABLE_ARB, #elif defined(GL_NV_occlusion_query) GL_PIXEL_COUNT_AVAILABLE_NV, #else 0, #endif &available); testGLError(); if (available==GL_TRUE) { extGlGetQueryObjectiv(OcclusionQueries[index].UID, #ifdef GL_ARB_occlusion_query GL_QUERY_RESULT_ARB, #elif defined(GL_NV_occlusion_query) GL_PIXEL_COUNT_NV, #else 0, #endif &available); if (queryFeature(EVDF_OCCLUSION_QUERY)) OcclusionQueries[index].Result = available; } testGLError(); } } //! Return query result. /** Return value is the number of visible pixels/fragments. The value is a safe approximation, i.e. can be larger than the actual value of pixels. */ u32 COpenGLDriver::getOcclusionQueryResult(scene::ISceneNode* node) const { const s32 index = OcclusionQueries.linear_search(SOccQuery(node)); if (index != -1) return OcclusionQueries[index].Result; else return ~0; } // small helper function to create vertex buffer object adress offsets static inline u8* buffer_offset(const long offset) { return ((u8*)0 + offset); } //! draws a vertex primitive list void COpenGLDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!primitiveCount || !vertexCount) return; if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (vertices && !FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) createColorBuffer(vertices, vertexCount, vType); // draw everything setRenderStates3DMode(); if (MultiTextureExtension) extGlClientActiveTexture(GL_TEXTURE0_ARB); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES)) glEnableClientState(GL_TEXTURE_COORD_ARRAY); if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES)) glEnableClientState(GL_NORMAL_ARRAY); if (vertices) { #if defined(GL_ARB_vertex_array_bgra) || defined(GL_EXT_vertex_array_bgra) if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) { switch (vType) { case EVT_STANDARD: glColorPointer(GL_BGRA, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color); break; case EVT_2TCOORDS: glColorPointer(GL_BGRA, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Color); break; case EVT_TANGENTS: glColorPointer(GL_BGRA, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Color); break; } } else #endif glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } switch (vType) { case EVT_STANDARD: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex), 0); } if (MultiTextureExtension && CurrentTexture[1]) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); } break; case EVT_2TCOORDS: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0)); } if (MultiTextureExtension) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: if (vertices) { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Normal); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].TCoords); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Pos); } else { glNormalPointer(GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(12)); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0)); } if (MultiTextureExtension) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Tangent); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(36)); extGlClientActiveTexture(GL_TEXTURE2_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Binormal); else glTexCoordPointer(3, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(48)); } break; } renderArray(indexList, primitiveCount, pType, iType); if (MultiTextureExtension) { if (vType==EVT_TANGENTS) { extGlClientActiveTexture(GL_TEXTURE2_ARB); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } if ((vType!=EVT_STANDARD) || CurrentTexture[1]) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } extGlClientActiveTexture(GL_TEXTURE0_ARB); } glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } void COpenGLDriver::createColorBuffer(const void* vertices, u32 vertexCount, E_VERTEX_TYPE vType) { // convert colors to gl color format. vertexCount *= 4; //reused as color component count ColorBuffer.set_used(vertexCount); u32 i; switch (vType) { case EVT_STANDARD: { const S3DVertex* p = static_cast<const S3DVertex*>(vertices); for (i=0; i<vertexCount; i+=4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_2TCOORDS: { const S3DVertex2TCoords* p = static_cast<const S3DVertex2TCoords*>(vertices); for (i=0; i<vertexCount; i+=4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; case EVT_TANGENTS: { const S3DVertexTangents* p = static_cast<const S3DVertexTangents*>(vertices); for (i=0; i<vertexCount; i+=4) { p->Color.toOpenGLColor(&ColorBuffer[i]); ++p; } } break; } } void COpenGLDriver::renderArray(const void* indexList, u32 primitiveCount, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { GLenum indexSize=0; switch (iType) { case EIT_16BIT: { indexSize=GL_UNSIGNED_SHORT; break; } case EIT_32BIT: { indexSize=GL_UNSIGNED_INT; break; } } switch (pType) { case scene::EPT_POINTS: case scene::EPT_POINT_SPRITES: { #ifdef GL_ARB_point_sprite if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) glEnable(GL_POINT_SPRITE_ARB); #endif // prepare size and attenuation (where supported) GLfloat particleSize=Material.Thickness; // if (AntiAlias) // particleSize=core::clamp(particleSize, DimSmoothedPoint[0], DimSmoothedPoint[1]); // else particleSize=core::clamp(particleSize, DimAliasedPoint[0], DimAliasedPoint[1]); #if defined(GL_VERSION_1_4) || defined(GL_ARB_point_parameters) || defined(GL_EXT_point_parameters) || defined(GL_SGIS_point_parameters) const float att[] = {1.0f, 1.0f, 0.0f}; #if defined(GL_VERSION_1_4) extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, att); // extGlPointParameterf(GL_POINT_SIZE_MIN,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE, 1.0f); #elif defined(GL_ARB_point_parameters) extGlPointParameterfv(GL_POINT_DISTANCE_ATTENUATION_ARB, att); // extGlPointParameterf(GL_POINT_SIZE_MIN_ARB,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX_ARB, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_ARB, 1.0f); #elif defined(GL_EXT_point_parameters) extGlPointParameterfv(GL_DISTANCE_ATTENUATION_EXT, att); // extGlPointParameterf(GL_POINT_SIZE_MIN_EXT,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX_EXT, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1.0f); #elif defined(GL_SGIS_point_parameters) extGlPointParameterfv(GL_DISTANCE_ATTENUATION_SGIS, att); // extGlPointParameterf(GL_POINT_SIZE_MIN_SGIS,1.f); extGlPointParameterf(GL_POINT_SIZE_MAX_SGIS, particleSize); extGlPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE_SGIS, 1.0f); #endif #endif glPointSize(particleSize); #ifdef GL_ARB_point_sprite if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) glTexEnvf(GL_POINT_SPRITE_ARB,GL_COORD_REPLACE, GL_TRUE); #endif glDrawArrays(GL_POINTS, 0, primitiveCount); #ifdef GL_ARB_point_sprite if (pType==scene::EPT_POINT_SPRITES && FeatureAvailable[IRR_ARB_point_sprite]) { glDisable(GL_POINT_SPRITE_ARB); glTexEnvf(GL_POINT_SPRITE_ARB,GL_COORD_REPLACE, GL_FALSE); } #endif } break; case scene::EPT_LINE_STRIP: glDrawElements(GL_LINE_STRIP, primitiveCount+1, indexSize, indexList); break; case scene::EPT_LINE_LOOP: glDrawElements(GL_LINE_LOOP, primitiveCount, indexSize, indexList); break; case scene::EPT_LINES: glDrawElements(GL_LINES, primitiveCount*2, indexSize, indexList); break; case scene::EPT_TRIANGLE_STRIP: glDrawElements(GL_TRIANGLE_STRIP, primitiveCount+2, indexSize, indexList); break; case scene::EPT_TRIANGLE_FAN: glDrawElements(GL_TRIANGLE_FAN, primitiveCount+2, indexSize, indexList); break; case scene::EPT_TRIANGLES: glDrawElements(GL_TRIANGLES, primitiveCount*3, indexSize, indexList); break; case scene::EPT_QUAD_STRIP: glDrawElements(GL_QUAD_STRIP, primitiveCount*2+2, indexSize, indexList); break; case scene::EPT_QUADS: glDrawElements(GL_QUADS, primitiveCount*4, indexSize, indexList); break; case scene::EPT_POLYGON: glDrawElements(GL_POLYGON, primitiveCount, indexSize, indexList); break; } } //! draws a vertex primitive list in 2d void COpenGLDriver::draw2DVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!primitiveCount || !vertexCount) return; if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::draw2DVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if (vertices && !FeatureAvailable[IRR_ARB_vertex_array_bgra] && !FeatureAvailable[IRR_EXT_vertex_array_bgra]) createColorBuffer(vertices, vertexCount, vType); // draw everything this->setActiveTexture(0, Material.getTexture(0)); if (Material.MaterialType==EMT_ONETEXTURE_BLEND) { E_BLEND_FACTOR srcFact; E_BLEND_FACTOR dstFact; E_MODULATE_FUNC modulo; u32 alphaSource; unpack_texureBlendFunc ( srcFact, dstFact, modulo, alphaSource, Material.MaterialTypeParam); setRenderStates2DMode(alphaSource&video::EAS_VERTEX_COLOR, (Material.getTexture(0) != 0), (alphaSource&video::EAS_TEXTURE) != 0); } else setRenderStates2DMode(Material.MaterialType==EMT_TRANSPARENT_VERTEX_ALPHA, (Material.getTexture(0) != 0), Material.MaterialType==EMT_TRANSPARENT_ALPHA_CHANNEL); if (MultiTextureExtension) extGlClientActiveTexture(GL_TEXTURE0_ARB); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_VERTEX_ARRAY); if ((pType!=scene::EPT_POINTS) && (pType!=scene::EPT_POINT_SPRITES)) glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) { #if defined(GL_ARB_vertex_array_bgra) || defined(GL_EXT_vertex_array_bgra) if (FeatureAvailable[IRR_ARB_vertex_array_bgra] || FeatureAvailable[IRR_EXT_vertex_array_bgra]) { switch (vType) { case EVT_STANDARD: glColorPointer(GL_BGRA, GL_UNSIGNED_BYTE, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Color); break; case EVT_2TCOORDS: glColorPointer(GL_BGRA, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Color); break; case EVT_TANGENTS: glColorPointer(GL_BGRA, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Color); break; } } else #endif glColorPointer(4, GL_UNSIGNED_BYTE, 0, &ColorBuffer[0]); } switch (vType) { case EVT_STANDARD: if (vertices) { glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].Pos); } else { glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex), 0); } if (MultiTextureExtension && CurrentTexture[1]) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), &(static_cast<const S3DVertex*>(vertices))[0].TCoords); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex), buffer_offset(28)); } break; case EVT_2TCOORDS: if (vertices) { glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].Pos); } else { glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertex2TCoords), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(28)); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(0)); } if (MultiTextureExtension) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if (vertices) glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), &(static_cast<const S3DVertex2TCoords*>(vertices))[0].TCoords2); else glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertex2TCoords), buffer_offset(36)); } break; case EVT_TANGENTS: if (vertices) { glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].TCoords); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), &(static_cast<const S3DVertexTangents*>(vertices))[0].Pos); } else { glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(S3DVertexTangents), buffer_offset(24)); glTexCoordPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(28)); glVertexPointer(2, GL_FLOAT, sizeof(S3DVertexTangents), buffer_offset(0)); } break; } renderArray(indexList, primitiveCount, pType, iType); if (MultiTextureExtension) { if ((vType!=EVT_STANDARD) || CurrentTexture[1]) { extGlClientActiveTexture(GL_TEXTURE1_ARB); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } extGlClientActiveTexture(GL_TEXTURE0_ARB); } glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } //! draws a set of 2d images, using a color and the alpha channel of the //! texture if desired. void COpenGLDriver::draw2DImageBatch(const video::ITexture* texture, const core::array<core::position2d<s32> >& positions, const core::array<core::rect<s32> >& sourceRects, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; const u32 drawCount = core::min_<u32>(positions.size(), sourceRects.size()); const core::dimension2d<u32>& ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast<f32>(ss.Width); const f32 invH = 1.f / static_cast<f32>(ss.Height); const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); disableTextures(1); if (!setActiveTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glBegin(GL_QUADS); for (u32 i=0; i<drawCount; ++i) { if (!sourceRects[i].isValid()) continue; core::position2d<s32> targetPos(positions[i]); core::position2d<s32> sourcePos(sourceRects[i].UpperLeftCorner); // This needs to be signed as it may go negative. core::dimension2d<s32> sourceSize(sourceRects[i].getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) continue; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) continue; } } // clip these coordinates if (targetPos.X<0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) continue; sourcePos.X -= targetPos.X; targetPos.X = 0; } if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) continue; } if (targetPos.Y<0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) continue; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) continue; } // ok, we've clipped everything. // now draw it. const core::rect<f32> tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); const core::rect<s32> poss(targetPos, sourceSize); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y)); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y)); } glEnd(); } //! draws a 2d image, using a color and the alpha channel of the texture if //! desired. The image is drawn at pos, clipped against clipRect (if != 0). //! Only the subtexture defined by sourceRect is used. void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& pos, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; if (!sourceRect.isValid()) return; core::position2d<s32> targetPos(pos); core::position2d<s32> sourcePos(sourceRect.UpperLeftCorner); // This needs to be signed as it may go negative. core::dimension2d<s32> sourceSize(sourceRect.getSize()); if (clipRect) { if (targetPos.X < clipRect->UpperLeftCorner.X) { sourceSize.Width += targetPos.X - clipRect->UpperLeftCorner.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X - clipRect->UpperLeftCorner.X; targetPos.X = clipRect->UpperLeftCorner.X; } if (targetPos.X + sourceSize.Width > clipRect->LowerRightCorner.X) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - clipRect->LowerRightCorner.X; if (sourceSize.Width <= 0) return; } if (targetPos.Y < clipRect->UpperLeftCorner.Y) { sourceSize.Height += targetPos.Y - clipRect->UpperLeftCorner.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y - clipRect->UpperLeftCorner.Y; targetPos.Y = clipRect->UpperLeftCorner.Y; } if (targetPos.Y + sourceSize.Height > clipRect->LowerRightCorner.Y) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - clipRect->LowerRightCorner.Y; if (sourceSize.Height <= 0) return; } } // clip these coordinates if (targetPos.X<0) { sourceSize.Width += targetPos.X; if (sourceSize.Width <= 0) return; sourcePos.X -= targetPos.X; targetPos.X = 0; } const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); if (targetPos.X + sourceSize.Width > (s32)renderTargetSize.Width) { sourceSize.Width -= (targetPos.X + sourceSize.Width) - renderTargetSize.Width; if (sourceSize.Width <= 0) return; } if (targetPos.Y<0) { sourceSize.Height += targetPos.Y; if (sourceSize.Height <= 0) return; sourcePos.Y -= targetPos.Y; targetPos.Y = 0; } if (targetPos.Y + sourceSize.Height > (s32)renderTargetSize.Height) { sourceSize.Height -= (targetPos.Y + sourceSize.Height) - renderTargetSize.Height; if (sourceSize.Height <= 0) return; } // ok, we've clipped everything. // now draw it. const core::dimension2d<u32>& ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast<f32>(ss.Width); const f32 invH = 1.f / static_cast<f32>(ss.Height); const core::rect<f32> tcoords( sourcePos.X * invW, sourcePos.Y * invH, (sourcePos.X + sourceSize.Width) * invW, (sourcePos.Y + sourceSize.Height) * invH); const core::rect<s32> poss(targetPos, sourceSize); disableTextures(1); if (!setActiveTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glBegin(GL_QUADS); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y)); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y)); glEnd(); } //! The same, but with a four element array of colors, one for each vertex void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::rect<s32>& destRect, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, const video::SColor* const colors, bool useAlphaChannelOfTexture) { if (!texture) return; const core::dimension2d<u32>& ss = texture->getOriginalSize(); const f32 invW = 1.f / static_cast<f32>(ss.Width); const f32 invH = 1.f / static_cast<f32>(ss.Height); const core::rect<f32> tcoords( sourceRect.UpperLeftCorner.X * invW, sourceRect.UpperLeftCorner.Y * invH, sourceRect.LowerRightCorner.X * invW, sourceRect.LowerRightCorner.Y *invH); const video::SColor temp[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; const video::SColor* const useColor = colors ? colors : temp; disableTextures(1); setActiveTexture(0, texture); setRenderStates2DMode(useColor[0].getAlpha()<255 || useColor[1].getAlpha()<255 || useColor[2].getAlpha()<255 || useColor[3].getAlpha()<255, true, useAlphaChannelOfTexture); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y, clipRect->getWidth(), clipRect->getHeight()); } glBegin(GL_QUADS); glColor4ub(useColor[0].getRed(), useColor[0].getGreen(), useColor[0].getBlue(), useColor[0].getAlpha()); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.UpperLeftCorner.Y)); glColor4ub(useColor[3].getRed(), useColor[3].getGreen(), useColor[3].getBlue(), useColor[3].getAlpha()); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.UpperLeftCorner.Y)); glColor4ub(useColor[2].getRed(), useColor[2].getGreen(), useColor[2].getBlue(), useColor[2].getAlpha()); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(destRect.LowerRightCorner.X), GLfloat(destRect.LowerRightCorner.Y)); glColor4ub(useColor[1].getRed(), useColor[1].getGreen(), useColor[1].getBlue(), useColor[1].getAlpha()); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(destRect.UpperLeftCorner.X), GLfloat(destRect.LowerRightCorner.Y)); glEnd(); if (clipRect) glDisable(GL_SCISSOR_TEST); } //! draws a set of 2d images, using a color and the alpha channel of the //! texture if desired. The images are drawn beginning at pos and concatenated //! in one line. All drawings are clipped against clipRect (if != 0). //! The subtextures are defined by the array of sourceRects and are chosen //! by the indices given. void COpenGLDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& pos, const core::array<core::rect<s32> >& sourceRects, const core::array<s32>& indices, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (!texture) return; disableTextures(1); if (!setActiveTexture(0, texture)) return; setRenderStates2DMode(color.getAlpha()<255, true, useAlphaChannelOfTexture); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); if (clipRect) { if (!clipRect->isValid()) return; glEnable(GL_SCISSOR_TEST); const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); glScissor(clipRect->UpperLeftCorner.X, renderTargetSize.Height-clipRect->LowerRightCorner.Y, clipRect->getWidth(),clipRect->getHeight()); } const core::dimension2d<u32>& ss = texture->getOriginalSize(); core::position2d<s32> targetPos(pos); const f32 invW = 1.f / static_cast<f32>(ss.Width); const f32 invH = 1.f / static_cast<f32>(ss.Height); for (u32 i=0; i<indices.size(); ++i) { const s32 currentIndex = indices[i]; if (!sourceRects[currentIndex].isValid()) break; const core::rect<f32> tcoords( sourceRects[currentIndex].UpperLeftCorner.X * invW, sourceRects[currentIndex].UpperLeftCorner.Y * invH, sourceRects[currentIndex].LowerRightCorner.X * invW, sourceRects[currentIndex].LowerRightCorner.Y * invH); const core::rect<s32> poss(targetPos, sourceRects[currentIndex].getSize()); glBegin(GL_QUADS); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.UpperLeftCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.UpperLeftCorner.Y)); glTexCoord2f(tcoords.LowerRightCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.LowerRightCorner.X), GLfloat(poss.LowerRightCorner.Y)); glTexCoord2f(tcoords.UpperLeftCorner.X, tcoords.LowerRightCorner.Y); glVertex2f(GLfloat(poss.UpperLeftCorner.X), GLfloat(poss.LowerRightCorner.Y)); glEnd(); targetPos.X += sourceRects[currentIndex].getWidth(); } if (clipRect) glDisable(GL_SCISSOR_TEST); } //! draw a 2d rectangle void COpenGLDriver::draw2DRectangle(SColor color, const core::rect<s32>& position, const core::rect<s32>* clip) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); core::rect<s32> pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glRectf(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y), GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y)); } //! draw an 2d rectangle void COpenGLDriver::draw2DRectangle(const core::rect<s32>& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect<s32>* clip) { core::rect<s32> pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; disableTextures(); setRenderStates2DMode(colorLeftUp.getAlpha() < 255 || colorRightUp.getAlpha() < 255 || colorLeftDown.getAlpha() < 255 || colorRightDown.getAlpha() < 255, false, false); glBegin(GL_QUADS); glColor4ub(colorLeftUp.getRed(), colorLeftUp.getGreen(), colorLeftUp.getBlue(), colorLeftUp.getAlpha()); glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.UpperLeftCorner.Y)); glColor4ub(colorRightUp.getRed(), colorRightUp.getGreen(), colorRightUp.getBlue(), colorRightUp.getAlpha()); glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.UpperLeftCorner.Y)); glColor4ub(colorRightDown.getRed(), colorRightDown.getGreen(), colorRightDown.getBlue(), colorRightDown.getAlpha()); glVertex2f(GLfloat(pos.LowerRightCorner.X), GLfloat(pos.LowerRightCorner.Y)); glColor4ub(colorLeftDown.getRed(), colorLeftDown.getGreen(), colorLeftDown.getBlue(), colorLeftDown.getAlpha()); glVertex2f(GLfloat(pos.UpperLeftCorner.X), GLfloat(pos.LowerRightCorner.Y)); glEnd(); } //! Draws a 2d line. void COpenGLDriver::draw2DLine(const core::position2d<s32>& start, const core::position2d<s32>& end, SColor color) { disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); glBegin(GL_LINES); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glVertex2f(GLfloat(start.X), GLfloat(start.Y)); glVertex2f(GLfloat(end.X), GLfloat(end.Y)); glEnd(); } //! Draws a pixel void COpenGLDriver::drawPixel(u32 x, u32 y, const SColor &color) { const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); if (x > (u32)renderTargetSize.Width || y > (u32)renderTargetSize.Height) return; disableTextures(); setRenderStates2DMode(color.getAlpha() < 255, false, false); glBegin(GL_POINTS); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glVertex2i(x, y); glEnd(); } bool COpenGLDriver::setActiveTexture(u32 stage, const video::ITexture* texture) { if (stage >= MaxTextureUnits) return false; if (CurrentTexture[stage]==texture) return true; if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB + stage); CurrentTexture[stage]=texture; if (!texture) { glDisable(GL_TEXTURE_2D); return true; } else { if (texture->getDriverType() != EDT_OPENGL) { glDisable(GL_TEXTURE_2D); CurrentTexture[stage]=0; os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, static_cast<const COpenGLTexture*>(texture)->getOpenGLTextureName()); } return true; } //! disables all textures beginning with the optional fromStage parameter. Otherwise all texture stages are disabled. //! Returns whether disabling was successful or not. bool COpenGLDriver::disableTextures(u32 fromStage) { bool result=true; for (u32 i=fromStage; i<MaxTextureUnits; ++i) result &= setActiveTexture(i, 0); return result; } //! creates a matrix in supplied GLfloat array to pass to OpenGL inline void COpenGLDriver::createGLMatrix(GLfloat gl_matrix[16], const core::matrix4& m) { memcpy(gl_matrix, m.pointer(), 16 * sizeof(f32)); } //! creates a opengltexturematrix from a D3D style texture matrix inline void COpenGLDriver::createGLTextureMatrix(GLfloat *o, const core::matrix4& m) { o[0] = m[0]; o[1] = m[1]; o[2] = 0.f; o[3] = 0.f; o[4] = m[4]; o[5] = m[5]; o[6] = 0.f; o[7] = 0.f; o[8] = 0.f; o[9] = 0.f; o[10] = 1.f; o[11] = 0.f; o[12] = m[8]; o[13] = m[9]; o[14] = 0.f; o[15] = 1.f; } //! returns a device dependent texture from a software surface (IImage) video::ITexture* COpenGLDriver::createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData) { return new COpenGLTexture(surface, name, mipmapData, this); } //! Sets a material. All 3d drawing functions draw geometry now using this material. void COpenGLDriver::setMaterial(const SMaterial& material) { Material = material; OverrideMaterial.apply(Material); for (s32 i = MaxTextureUnits-1; i>= 0; --i) { setActiveTexture(i, material.getTexture(i)); setTransform ((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + i), Material.getTextureMatrix(i)); } } //! prints error if an error happened. bool COpenGLDriver::testGLError() { #ifdef _DEBUG GLenum g = glGetError(); switch (g) { case GL_NO_ERROR: return false; case GL_INVALID_ENUM: os::Printer::log("GL_INVALID_ENUM", ELL_ERROR); break; case GL_INVALID_VALUE: os::Printer::log("GL_INVALID_VALUE", ELL_ERROR); break; case GL_INVALID_OPERATION: os::Printer::log("GL_INVALID_OPERATION", ELL_ERROR); break; case GL_STACK_OVERFLOW: os::Printer::log("GL_STACK_OVERFLOW", ELL_ERROR); break; case GL_STACK_UNDERFLOW: os::Printer::log("GL_STACK_UNDERFLOW", ELL_ERROR); break; case GL_OUT_OF_MEMORY: os::Printer::log("GL_OUT_OF_MEMORY", ELL_ERROR); break; case GL_TABLE_TOO_LARGE: os::Printer::log("GL_TABLE_TOO_LARGE", ELL_ERROR); break; #if defined(GL_EXT_framebuffer_object) case GL_INVALID_FRAMEBUFFER_OPERATION_EXT: os::Printer::log("GL_INVALID_FRAMEBUFFER_OPERATION", ELL_ERROR); break; #endif }; _IRR_DEBUG_BREAK_IF(true); return true; #else return false; #endif } //! sets the needed renderstates void COpenGLDriver::setRenderStates3DMode() { if (CurrentRenderMode != ERM_3D) { // Reset Texture Stages glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // switch back the matrices glMatrixMode(GL_MODELVIEW); glLoadMatrixf((Matrices[ETS_VIEW] * Matrices[ETS_WORLD]).pointer()); glMatrixMode(GL_PROJECTION); glLoadMatrixf(Matrices[ETS_PROJECTION].pointer()); ResetRenderStates = true; } if (ResetRenderStates || LastMaterial != Material) { // unset old material if (LastMaterial.MaterialType != Material.MaterialType && static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); // set new material. if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnSetMaterial( Material, LastMaterial, ResetRenderStates, this); LastMaterial = Material; ResetRenderStates = false; } if (static_cast<u32>(Material.MaterialType) < MaterialRenderers.size()) MaterialRenderers[Material.MaterialType].Renderer->OnRender(this, video::EVT_STANDARD); CurrentRenderMode = ERM_3D; } //! Get native wrap mode value GLint COpenGLDriver::getTextureWrapMode(const u8 clamp) { GLint mode=GL_REPEAT; switch (clamp) { case ETC_REPEAT: mode=GL_REPEAT; break; case ETC_CLAMP: mode=GL_CLAMP; break; case ETC_CLAMP_TO_EDGE: #ifdef GL_VERSION_1_2 if (Version>101) mode=GL_CLAMP_TO_EDGE; else #endif #ifdef GL_SGIS_texture_edge_clamp if (FeatureAvailable[IRR_SGIS_texture_edge_clamp]) mode=GL_CLAMP_TO_EDGE_SGIS; else #endif // fallback mode=GL_CLAMP; break; case ETC_CLAMP_TO_BORDER: #ifdef GL_VERSION_1_3 if (Version>102) mode=GL_CLAMP_TO_BORDER; else #endif #ifdef GL_ARB_texture_border_clamp if (FeatureAvailable[IRR_ARB_texture_border_clamp]) mode=GL_CLAMP_TO_BORDER_ARB; else #endif #ifdef GL_SGIS_texture_border_clamp if (FeatureAvailable[IRR_SGIS_texture_border_clamp]) mode=GL_CLAMP_TO_BORDER_SGIS; else #endif // fallback mode=GL_CLAMP; break; case ETC_MIRROR: #ifdef GL_VERSION_1_4 if (Version>103) mode=GL_MIRRORED_REPEAT; else #endif #ifdef GL_ARB_texture_border_clamp if (FeatureAvailable[IRR_ARB_texture_mirrored_repeat]) mode=GL_MIRRORED_REPEAT_ARB; else #endif #ifdef GL_IBM_texture_mirrored_repeat if (FeatureAvailable[IRR_IBM_texture_mirrored_repeat]) mode=GL_MIRRORED_REPEAT_IBM; else #endif mode=GL_REPEAT; break; case ETC_MIRROR_CLAMP: #ifdef GL_EXT_texture_mirror_clamp if (FeatureAvailable[IRR_EXT_texture_mirror_clamp]) mode=GL_MIRROR_CLAMP_EXT; else #endif #if defined(GL_ATI_texture_mirror_once) if (FeatureAvailable[IRR_ATI_texture_mirror_once]) mode=GL_MIRROR_CLAMP_ATI; else #endif mode=GL_CLAMP; break; case ETC_MIRROR_CLAMP_TO_EDGE: #ifdef GL_EXT_texture_mirror_clamp if (FeatureAvailable[IRR_EXT_texture_mirror_clamp]) mode=GL_MIRROR_CLAMP_TO_EDGE_EXT; else #endif #if defined(GL_ATI_texture_mirror_once) if (FeatureAvailable[IRR_ATI_texture_mirror_once]) mode=GL_MIRROR_CLAMP_TO_EDGE_ATI; else #endif mode=GL_CLAMP; break; case ETC_MIRROR_CLAMP_TO_BORDER: #ifdef GL_EXT_texture_mirror_clamp if (FeatureAvailable[IRR_EXT_texture_mirror_clamp]) mode=GL_MIRROR_CLAMP_TO_BORDER_EXT; else #endif mode=GL_CLAMP; break; } return mode; } void COpenGLDriver::setWrapMode(const SMaterial& material) { // texture address mode // Has to be checked always because it depends on the textures for (u32 u=0; u<MaxTextureUnits; ++u) { if (!CurrentTexture[u]) continue; if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB + u); else if (u>0) break; // stop loop glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, getTextureWrapMode(material.TextureLayer[u].TextureWrapU)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, getTextureWrapMode(material.TextureLayer[u].TextureWrapV)); } } //! Can be called by an IMaterialRenderer to make its work easier. void COpenGLDriver::setBasicRenderStates(const SMaterial& material, const SMaterial& lastmaterial, bool resetAllRenderStates) { if (resetAllRenderStates || lastmaterial.ColorMaterial != material.ColorMaterial) { switch (material.ColorMaterial) { case ECM_NONE: glDisable(GL_COLOR_MATERIAL); break; case ECM_DIFFUSE: glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE); break; case ECM_AMBIENT: glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT); break; case ECM_EMISSIVE: glColorMaterial(GL_FRONT_AND_BACK, GL_EMISSION); break; case ECM_SPECULAR: glColorMaterial(GL_FRONT_AND_BACK, GL_SPECULAR); break; case ECM_DIFFUSE_AND_AMBIENT: glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); break; } if (material.ColorMaterial != ECM_NONE) glEnable(GL_COLOR_MATERIAL); } if (resetAllRenderStates || lastmaterial.AmbientColor != material.AmbientColor || lastmaterial.DiffuseColor != material.DiffuseColor || lastmaterial.EmissiveColor != material.EmissiveColor || lastmaterial.ColorMaterial != material.ColorMaterial) { GLfloat color[4]; const f32 inv = 1.0f / 255.0f; if ((material.ColorMaterial != video::ECM_AMBIENT) && (material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) { color[0] = material.AmbientColor.getRed() * inv; color[1] = material.AmbientColor.getGreen() * inv; color[2] = material.AmbientColor.getBlue() * inv; color[3] = material.AmbientColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, color); } if ((material.ColorMaterial != video::ECM_DIFFUSE) && (material.ColorMaterial != video::ECM_DIFFUSE_AND_AMBIENT)) { color[0] = material.DiffuseColor.getRed() * inv; color[1] = material.DiffuseColor.getGreen() * inv; color[2] = material.DiffuseColor.getBlue() * inv; color[3] = material.DiffuseColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, color); } if (material.ColorMaterial != video::ECM_EMISSIVE) { color[0] = material.EmissiveColor.getRed() * inv; color[1] = material.EmissiveColor.getGreen() * inv; color[2] = material.EmissiveColor.getBlue() * inv; color[3] = material.EmissiveColor.getAlpha() * inv; glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, color); } } if (resetAllRenderStates || lastmaterial.SpecularColor != material.SpecularColor || lastmaterial.Shininess != material.Shininess || lastmaterial.ColorMaterial != material.ColorMaterial) { GLfloat color[4]={0.f,0.f,0.f,1.f}; const f32 inv = 1.0f / 255.0f; glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, material.Shininess); // disable Specular colors if no shininess is set if ((material.Shininess != 0.0f) && (material.ColorMaterial != video::ECM_SPECULAR)) { #ifdef GL_EXT_separate_specular_color if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR); #endif color[0] = material.SpecularColor.getRed() * inv; color[1] = material.SpecularColor.getGreen() * inv; color[2] = material.SpecularColor.getBlue() * inv; color[3] = material.SpecularColor.getAlpha() * inv; } #ifdef GL_EXT_separate_specular_color else if (FeatureAvailable[IRR_EXT_separate_specular_color]) glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SINGLE_COLOR); #endif glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, color); } // Texture filter // Has to be checked always because it depends on the textures // Filtering has to be set for each texture layer for (u32 i=0; i<MaxTextureUnits; ++i) { if (!CurrentTexture[i]) continue; if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB + i); else if (i>0) break; #ifdef GL_EXT_texture_lod_bias if (FeatureAvailable[IRR_EXT_texture_lod_bias]) { if (material.TextureLayer[i].LODBias) { const float tmp = core::clamp(material.TextureLayer[i].LODBias * 0.125f, -MaxTextureLODBias, MaxTextureLODBias); glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, tmp); } else glTexEnvf(GL_TEXTURE_FILTER_CONTROL_EXT, GL_TEXTURE_LOD_BIAS_EXT, 0.f); } #endif glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); if (material.getTexture(i) && material.getTexture(i)->hasMipMaps() && material.UseMipMaps) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, material.TextureLayer[i].TrilinearFilter ? GL_LINEAR_MIPMAP_LINEAR : material.TextureLayer[i].BilinearFilter ? GL_LINEAR_MIPMAP_NEAREST : GL_NEAREST_MIPMAP_NEAREST); else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, (material.TextureLayer[i].BilinearFilter || material.TextureLayer[i].TrilinearFilter) ? GL_LINEAR : GL_NEAREST); #ifdef GL_EXT_texture_filter_anisotropic if (FeatureAvailable[IRR_EXT_texture_filter_anisotropic]) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, material.TextureLayer[i].AnisotropicFilter>1 ? core::min_(MaxAnisotropy, material.TextureLayer[i].AnisotropicFilter) : 1); #endif } // fillmode if (resetAllRenderStates || (lastmaterial.Wireframe != material.Wireframe) || (lastmaterial.PointCloud != material.PointCloud)) glPolygonMode(GL_FRONT_AND_BACK, material.Wireframe ? GL_LINE : material.PointCloud? GL_POINT : GL_FILL); // shademode if (resetAllRenderStates || (lastmaterial.GouraudShading != material.GouraudShading)) { if (material.GouraudShading) glShadeModel(GL_SMOOTH); else glShadeModel(GL_FLAT); } // lighting if (resetAllRenderStates || (lastmaterial.Lighting != material.Lighting)) { if (material.Lighting) glEnable(GL_LIGHTING); else glDisable(GL_LIGHTING); } // zbuffer if (resetAllRenderStates || lastmaterial.ZBuffer != material.ZBuffer) { switch (material.ZBuffer) { case ECFN_NEVER: glDisable(GL_DEPTH_TEST); break; case ECFN_LESSEQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); break; case ECFN_EQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_EQUAL); break; case ECFN_LESS: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); break; case ECFN_NOTEQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_NOTEQUAL); break; case ECFN_GREATEREQUAL: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GEQUAL); break; case ECFN_GREATER: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GREATER); break; case ECFN_ALWAYS: glEnable(GL_DEPTH_TEST); glDepthFunc(GL_ALWAYS); break; } } // zwrite // if (resetAllRenderStates || lastmaterial.ZWriteEnable != material.ZWriteEnable) { if (material.ZWriteEnable && (AllowZWriteOnTransparent || !material.isTransparent())) { glDepthMask(GL_TRUE); } else glDepthMask(GL_FALSE); } // back face culling if (resetAllRenderStates || (lastmaterial.FrontfaceCulling != material.FrontfaceCulling) || (lastmaterial.BackfaceCulling != material.BackfaceCulling)) { if ((material.FrontfaceCulling) && (material.BackfaceCulling)) { glCullFace(GL_FRONT_AND_BACK); glEnable(GL_CULL_FACE); } else if (material.BackfaceCulling) { glCullFace(GL_BACK); glEnable(GL_CULL_FACE); } else if (material.FrontfaceCulling) { glCullFace(GL_FRONT); glEnable(GL_CULL_FACE); } else glDisable(GL_CULL_FACE); } // fog if (resetAllRenderStates || lastmaterial.FogEnable != material.FogEnable) { if (material.FogEnable) glEnable(GL_FOG); else glDisable(GL_FOG); } // normalization if (resetAllRenderStates || lastmaterial.NormalizeNormals != material.NormalizeNormals) { if (material.NormalizeNormals) glEnable(GL_NORMALIZE); else glDisable(GL_NORMALIZE); } // Color Mask if (resetAllRenderStates || lastmaterial.ColorMask != material.ColorMask) { glColorMask( (material.ColorMask & ECP_RED)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE, (material.ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE); } // thickness if (resetAllRenderStates || lastmaterial.Thickness != material.Thickness) { if (AntiAlias) { // glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimSmoothedPoint[0], DimSmoothedPoint[1])); // we don't use point smoothing glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1])); glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimSmoothedLine[0], DimSmoothedLine[1])); } else { glPointSize(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedPoint[0], DimAliasedPoint[1])); glLineWidth(core::clamp(static_cast<GLfloat>(material.Thickness), DimAliasedLine[0], DimAliasedLine[1])); } } // Anti aliasing if (resetAllRenderStates || lastmaterial.AntiAliasing != material.AntiAliasing) { if (FeatureAvailable[IRR_ARB_multisample]) { if (material.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB); else if (lastmaterial.AntiAliasing & EAAM_ALPHA_TO_COVERAGE) glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB); if ((AntiAlias >= 2) && (material.AntiAliasing & (EAAM_SIMPLE|EAAM_QUALITY))) { glEnable(GL_MULTISAMPLE_ARB); #ifdef GL_NV_multisample_filter_hint if (FeatureAvailable[IRR_NV_multisample_filter_hint]) { if ((material.AntiAliasing & EAAM_QUALITY) == EAAM_QUALITY) glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST); else glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST); } #endif } else glDisable(GL_MULTISAMPLE_ARB); } if ((material.AntiAliasing & EAAM_LINE_SMOOTH) != (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH)) { if (material.AntiAliasing & EAAM_LINE_SMOOTH) glEnable(GL_LINE_SMOOTH); else if (lastmaterial.AntiAliasing & EAAM_LINE_SMOOTH) glDisable(GL_LINE_SMOOTH); } if ((material.AntiAliasing & EAAM_POINT_SMOOTH) != (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH)) { if (material.AntiAliasing & EAAM_POINT_SMOOTH) // often in software, and thus very slow glEnable(GL_POINT_SMOOTH); else if (lastmaterial.AntiAliasing & EAAM_POINT_SMOOTH) glDisable(GL_POINT_SMOOTH); } } setWrapMode(material); // be sure to leave in texture stage 0 if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB); } //! Enable the 2d override material void COpenGLDriver::enableMaterial2D(bool enable) { if (!enable) CurrentRenderMode = ERM_NONE; CNullDriver::enableMaterial2D(enable); } //! sets the needed renderstates void COpenGLDriver::setRenderStates2DMode(bool alpha, bool texture, bool alphaChannel) { if (CurrentRenderMode != ERM_2D || Transformation3DChanged) { // unset last 3d material if (CurrentRenderMode == ERM_3D) { if (static_cast<u32>(LastMaterial.MaterialType) < MaterialRenderers.size()) MaterialRenderers[LastMaterial.MaterialType].Renderer->OnUnsetMaterial(); } if (Transformation3DChanged) { glMatrixMode(GL_PROJECTION); const core::dimension2d<u32>& renderTargetSize = getCurrentRenderTargetSize(); core::matrix4 m(core::matrix4::EM4CONST_NOTHING); m.buildProjectionMatrixOrthoLH(f32(renderTargetSize.Width), f32(-(s32)(renderTargetSize.Height)), -1.0f, 1.0f); m.setTranslation(core::vector3df(-1,1,0)); glLoadMatrixf(m.pointer()); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.375f, 0.375f, 0.0f); // Make sure we set first texture matrix if (MultiTextureExtension) extGlActiveTexture(GL_TEXTURE0_ARB); Transformation3DChanged = false; } if (!OverrideMaterial2DEnabled) { setBasicRenderStates(InitMaterial2D, LastMaterial, true); LastMaterial = InitMaterial2D; } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } if (OverrideMaterial2DEnabled) { OverrideMaterial2D.Lighting=false; OverrideMaterial2D.ZBuffer=ECFN_NEVER; OverrideMaterial2D.ZWriteEnable=false; setBasicRenderStates(OverrideMaterial2D, LastMaterial, false); LastMaterial = OverrideMaterial2D; } if (alphaChannel || alpha) { glEnable(GL_BLEND); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_GREATER, 0.f); } else { glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); } if (texture) { if (!OverrideMaterial2DEnabled) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } Material.setTexture(0, const_cast<video::ITexture*>(CurrentTexture[0])); setTransform(ETS_TEXTURE_0, core::IdentityMatrix); // Due to the transformation change, the previous line would call a reset each frame // but we can safely reset the variable as it was false before Transformation3DChanged=false; if (alphaChannel) { // if alpha and alpha texture just modulate, otherwise use only the alpha channel if (alpha) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { #if defined(GL_ARB_texture_env_combine) || defined(GL_EXT_texture_env_combine) if (FeatureAvailable[IRR_ARB_texture_env_combine]||FeatureAvailable[IRR_EXT_texture_env_combine]) { #ifdef GL_ARB_texture_env_combine glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_TEXTURE); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR_ARB); #else glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_TEXTURE); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT); #endif } else #endif glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } } else { if (alpha) { #if defined(GL_ARB_texture_env_combine) || defined(GL_EXT_texture_env_combine) if (FeatureAvailable[IRR_ARB_texture_env_combine]||FeatureAvailable[IRR_EXT_texture_env_combine]) { #ifdef GL_ARB_texture_env_combine glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_ARB); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_ARB, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_ARB, GL_PRIMARY_COLOR_ARB); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_ARB, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_ARB, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_ARB, GL_PRIMARY_COLOR_ARB); #else glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_ALPHA_EXT, GL_REPLACE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA_EXT, GL_PRIMARY_COLOR_EXT); // rgb always modulates glTexEnvf(GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_MODULATE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE0_RGB_EXT, GL_TEXTURE); glTexEnvf(GL_TEXTURE_ENV, GL_SOURCE1_RGB_EXT, GL_PRIMARY_COLOR_EXT); #endif } else #endif glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } else { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } } } CurrentRenderMode = ERM_2D; } //! \return Returns the name of the video driver. const wchar_t* COpenGLDriver::getName() const { return Name.c_str(); } //! deletes all dynamic lights there are void COpenGLDriver::deleteAllDynamicLights() { for (s32 i=0; i<MaxLights; ++i) glDisable(GL_LIGHT0 + i); RequestedLights.clear(); CNullDriver::deleteAllDynamicLights(); } //! adds a dynamic light s32 COpenGLDriver::addDynamicLight(const SLight& light) { CNullDriver::addDynamicLight(light); RequestedLights.push_back(RequestedLight(light)); u32 newLightIndex = RequestedLights.size() - 1; // Try and assign a hardware light just now, but don't worry if I can't assignHardwareLight(newLightIndex); return (s32)newLightIndex; } void COpenGLDriver::assignHardwareLight(u32 lightIndex) { setTransform(ETS_WORLD, core::matrix4()); s32 lidx; for (lidx=GL_LIGHT0; lidx < GL_LIGHT0 + MaxLights; ++lidx) { if(!glIsEnabled(lidx)) { RequestedLights[lightIndex].HardwareLightIndex = lidx; break; } } if(lidx == GL_LIGHT0 + MaxLights) // There's no room for it just now return; GLfloat data[4]; const SLight & light = RequestedLights[lightIndex].LightData; switch (light.Type) { case video::ELT_SPOT: data[0] = light.Direction.X; data[1] = light.Direction.Y; data[2] = light.Direction.Z; data[3] = 0.0f; glLightfv(lidx, GL_SPOT_DIRECTION, data); // set position data[0] = light.Position.X; data[1] = light.Position.Y; data[2] = light.Position.Z; data[3] = 1.0f; // 1.0f for positional light glLightfv(lidx, GL_POSITION, data); glLightf(lidx, GL_SPOT_EXPONENT, light.Falloff); glLightf(lidx, GL_SPOT_CUTOFF, light.OuterCone); break; case video::ELT_POINT: // set position data[0] = light.Position.X; data[1] = light.Position.Y; data[2] = light.Position.Z; data[3] = 1.0f; // 1.0f for positional light glLightfv(lidx, GL_POSITION, data); glLightf(lidx, GL_SPOT_EXPONENT, 0.0f); glLightf(lidx, GL_SPOT_CUTOFF, 180.0f); break; case video::ELT_DIRECTIONAL: // set direction data[0] = -light.Direction.X; data[1] = -light.Direction.Y; data[2] = -light.Direction.Z; data[3] = 0.0f; // 0.0f for directional light glLightfv(lidx, GL_POSITION, data); glLightf(lidx, GL_SPOT_EXPONENT, 0.0f); glLightf(lidx, GL_SPOT_CUTOFF, 180.0f); break; } // set diffuse color data[0] = light.DiffuseColor.r; data[1] = light.DiffuseColor.g; data[2] = light.DiffuseColor.b; data[3] = light.DiffuseColor.a; glLightfv(lidx, GL_DIFFUSE, data); // set specular color data[0] = light.SpecularColor.r; data[1] = light.SpecularColor.g; data[2] = light.SpecularColor.b; data[3] = light.SpecularColor.a; glLightfv(lidx, GL_SPECULAR, data); // set ambient color data[0] = light.AmbientColor.r; data[1] = light.AmbientColor.g; data[2] = light.AmbientColor.b; data[3] = light.AmbientColor.a; glLightfv(lidx, GL_AMBIENT, data); // 1.0f / (constant + linear * d + quadratic*(d*d); // set attenuation glLightf(lidx, GL_CONSTANT_ATTENUATION, light.Attenuation.X); glLightf(lidx, GL_LINEAR_ATTENUATION, light.Attenuation.Y); glLightf(lidx, GL_QUADRATIC_ATTENUATION, light.Attenuation.Z); glEnable(lidx); } //! Turns a dynamic light on or off //! \param lightIndex: the index returned by addDynamicLight //! \param turnOn: true to turn the light on, false to turn it off void COpenGLDriver::turnLightOn(s32 lightIndex, bool turnOn) { if(lightIndex < 0 || lightIndex >= (s32)RequestedLights.size()) return; RequestedLight & requestedLight = RequestedLights[lightIndex]; requestedLight.DesireToBeOn = turnOn; if(turnOn) { if(-1 == requestedLight.HardwareLightIndex) assignHardwareLight(lightIndex); } else { if(-1 != requestedLight.HardwareLightIndex) { // It's currently assigned, so free up the hardware light glDisable(requestedLight.HardwareLightIndex); requestedLight.HardwareLightIndex = -1; // Now let the first light that's waiting on a free hardware light grab it for(u32 requested = 0; requested < RequestedLights.size(); ++requested) if(RequestedLights[requested].DesireToBeOn && -1 == RequestedLights[requested].HardwareLightIndex) { assignHardwareLight(requested); break; } } } } //! returns the maximal amount of dynamic lights the device can handle u32 COpenGLDriver::getMaximalDynamicLightAmount() const { return MaxLights; } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void COpenGLDriver::setAmbientLight(const SColorf& color) { GLfloat data[4] = {color.r, color.g, color.b, color.a}; glLightModelfv(GL_LIGHT_MODEL_AMBIENT, data); } // this code was sent in by Oliver Klems, thank you! (I modified the glViewport // method just a bit. void COpenGLDriver::setViewPort(const core::rect<s32>& area) { if (area == ViewPort) return; core::rect<s32> vp = area; core::rect<s32> rendert(0,0, getCurrentRenderTargetSize().Width, getCurrentRenderTargetSize().Height); vp.clipAgainst(rendert); if (vp.getHeight()>0 && vp.getWidth()>0) { glViewport(vp.UpperLeftCorner.X, getCurrentRenderTargetSize().Height - vp.UpperLeftCorner.Y - vp.getHeight(), vp.getWidth(), vp.getHeight()); ViewPort = vp; } } //! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do //! this: First, draw all geometry. Then use this method, to draw the shadow //! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow. void COpenGLDriver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail) { if (!StencilBuffer || !count) return; // unset last 3d material if (CurrentRenderMode == ERM_3D && static_cast<u32>(Material.MaterialType) < MaterialRenderers.size()) { MaterialRenderers[Material.MaterialType].Renderer->OnUnsetMaterial(); ResetRenderStates = true; } // store current OpenGL state glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT); glDisable(GL_LIGHTING); glDisable(GL_FOG); glDepthFunc(GL_LEQUAL); glDepthMask(GL_FALSE); // no depth buffer writing glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // no color buffer drawing glEnable(GL_STENCIL_TEST); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(0.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3,GL_FLOAT,sizeof(core::vector3df),&triangles[0]); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); GLenum incr = GL_INCR; GLenum decr = GL_DECR; #ifdef GL_EXT_stencil_wrap if (FeatureAvailable[IRR_EXT_stencil_wrap]) { incr = GL_INCR_WRAP_EXT; decr = GL_DECR_WRAP_EXT; } #endif #ifdef GL_NV_depth_clamp if (FeatureAvailable[IRR_NV_depth_clamp]) glEnable(GL_DEPTH_CLAMP_NV); #endif // The first parts are not correctly working, yet. #if 0 #ifdef GL_EXT_stencil_two_side if (FeatureAvailable[IRR_EXT_stencil_two_side]) { glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT); glDisable(GL_CULL_FACE); if (zfail) { extGlActiveStencilFace(GL_BACK); glStencilOp(GL_KEEP, incr, GL_KEEP); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); extGlActiveStencilFace(GL_FRONT); glStencilOp(GL_KEEP, decr, GL_KEEP); } else // zpass { extGlActiveStencilFace(GL_BACK); glStencilOp(GL_KEEP, GL_KEEP, decr); glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); extGlActiveStencilFace(GL_FRONT); glStencilOp(GL_KEEP, GL_KEEP, incr); } glStencilMask(~0); glStencilFunc(GL_ALWAYS, 0, ~0); glDrawArrays(GL_TRIANGLES,0,count); glDisable(GL_STENCIL_TEST_TWO_SIDE_EXT); } else #endif if (FeatureAvailable[IRR_ATI_separate_stencil]) { glDisable(GL_CULL_FACE); if (zfail) { extGlStencilOpSeparate(GL_BACK, GL_KEEP, incr, GL_KEEP); extGlStencilOpSeparate(GL_FRONT, GL_KEEP, decr, GL_KEEP); } else // zpass { extGlStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, decr); extGlStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP, incr); } extGlStencilFuncSeparate(GL_ALWAYS, GL_ALWAYS, 0, ~0); glStencilMask(~0); glDrawArrays(GL_TRIANGLES,0,count); } else #endif { glEnable(GL_CULL_FACE); if (zfail) { glCullFace(GL_FRONT); glStencilOp(GL_KEEP, incr, GL_KEEP); glDrawArrays(GL_TRIANGLES,0,count); glCullFace(GL_BACK); glStencilOp(GL_KEEP, decr, GL_KEEP); glDrawArrays(GL_TRIANGLES,0,count); } else // zpass { glCullFace(GL_BACK); glStencilOp(GL_KEEP, GL_KEEP, incr); glDrawArrays(GL_TRIANGLES,0,count); glCullFace(GL_FRONT); glStencilOp(GL_KEEP, GL_KEEP, decr); glDrawArrays(GL_TRIANGLES,0,count); } } #ifdef GL_NV_depth_clamp if (FeatureAvailable[IRR_NV_depth_clamp]) glDisable(GL_DEPTH_CLAMP_NV); #endif glDisableClientState(GL_VERTEX_ARRAY); //not stored on stack glPopAttrib(); } //! Fills the stencil shadow with color. After the shadow volume has been drawn //! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this //! to draw the color of the shadow. void COpenGLDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!StencilBuffer) return; disableTextures(); // store attributes glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT); glDisable(GL_LIGHTING); glDisable(GL_FOG); glDepthMask(GL_FALSE); glShadeModel(GL_FLAT); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_STENCIL_TEST); glStencilFunc(GL_NOTEQUAL, 0, ~0); glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // draw a shadow rectangle covering the entire screen using stencil buffer glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); glBegin(GL_QUADS); glColor4ub(leftDownEdge.getRed(), leftDownEdge.getGreen(), leftDownEdge.getBlue(), leftDownEdge.getAlpha()); glVertex3f(-1.f,-1.f,-0.9f); glColor4ub(leftUpEdge.getRed(), leftUpEdge.getGreen(), leftUpEdge.getBlue(), leftUpEdge.getAlpha()); glVertex3f(-1.f, 1.f,-0.9f); glColor4ub(rightUpEdge.getRed(), rightUpEdge.getGreen(), rightUpEdge.getBlue(), rightUpEdge.getAlpha()); glVertex3f(1.f, 1.f,-0.9f); glColor4ub(rightDownEdge.getRed(), rightDownEdge.getGreen(), rightDownEdge.getBlue(), rightDownEdge.getAlpha()); glVertex3f(1.f,-1.f,-0.9f); glEnd(); clearBuffers(false, false, clearStencilBuffer, 0x0); // restore settings glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glPopAttrib(); } //! Sets the fog mode. void COpenGLDriver::setFog(SColor c, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(c, fogType, start, end, density, pixelFog, rangeFog); glFogf(GL_FOG_MODE, GLfloat((fogType==EFT_FOG_LINEAR)? GL_LINEAR : (fogType==EFT_FOG_EXP)?GL_EXP:GL_EXP2)); #ifdef GL_EXT_fog_coord if (FeatureAvailable[IRR_EXT_fog_coord]) glFogi(GL_FOG_COORDINATE_SOURCE, GL_FRAGMENT_DEPTH); #endif #ifdef GL_NV_fog_distance if (FeatureAvailable[IRR_NV_fog_distance]) { if (rangeFog) glFogi(GL_FOG_DISTANCE_MODE_NV, GL_EYE_RADIAL_NV); else glFogi(GL_FOG_DISTANCE_MODE_NV, GL_EYE_PLANE_ABSOLUTE_NV); } #endif if (fogType==EFT_FOG_LINEAR) { glFogf(GL_FOG_START, start); glFogf(GL_FOG_END, end); } else glFogf(GL_FOG_DENSITY, density); if (pixelFog) glHint(GL_FOG_HINT, GL_NICEST); else glHint(GL_FOG_HINT, GL_FASTEST); SColorf color(c); GLfloat data[4] = {color.r, color.g, color.b, color.a}; glFogfv(GL_FOG_COLOR, data); } //! Draws a 3d line. void COpenGLDriver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { setRenderStates3DMode(); glBegin(GL_LINES); glColor4ub(color.getRed(), color.getGreen(), color.getBlue(), color.getAlpha()); glVertex3f(start.X, start.Y, start.Z); glVertex3f(end.X, end.Y, end.Z); glEnd(); } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void COpenGLDriver::OnResize(const core::dimension2d<u32>& size) { CNullDriver::OnResize(size); glViewport(0, 0, size.Width, size.Height); Transformation3DChanged = true; } //! Returns type of video driver E_DRIVER_TYPE COpenGLDriver::getDriverType() const { return EDT_OPENGL; } //! returns color format ECOLOR_FORMAT COpenGLDriver::getColorFormat() const { return ColorFormat; } //! Sets a vertex shader constant. void COpenGLDriver::setVertexShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { #ifdef GL_ARB_vertex_program for (s32 i=0; i<constantAmount; ++i) extGlProgramLocalParameter4fv(GL_VERTEX_PROGRAM_ARB, startRegister+i, &data[i*4]); #endif } //! Sets a pixel shader constant. void COpenGLDriver::setPixelShaderConstant(const f32* data, s32 startRegister, s32 constantAmount) { #ifdef GL_ARB_fragment_program for (s32 i=0; i<constantAmount; ++i) extGlProgramLocalParameter4fv(GL_FRAGMENT_PROGRAM_ARB, startRegister+i, &data[i*4]); #endif } //! Sets a constant for the vertex shader based on a name. bool COpenGLDriver::setVertexShaderConstant(const c8* name, const f32* floats, int count) { //pass this along, as in GLSL the same routine is used for both vertex and fragment shaders return setPixelShaderConstant(name, floats, count); } //! Sets a constant for the pixel shader based on a name. bool COpenGLDriver::setPixelShaderConstant(const c8* name, const f32* floats, int count) { os::Printer::log("Error: Please call services->setPixelShaderConstant(), not VideoDriver->setPixelShaderConstant()."); return false; } //! Adds a new material renderer to the VideoDriver, using pixel and/or //! vertex shaders to render geometry. s32 COpenGLDriver::addShaderMaterial(const c8* vertexShaderProgram, const c8* pixelShaderProgram, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; COpenGLShaderMaterialRenderer* r = new COpenGLShaderMaterialRenderer( this, nr, vertexShaderProgram, pixelShaderProgram, callback, getMaterialRenderer(baseMaterial), userData); r->drop(); return nr; } //! Adds a new material renderer to the VideoDriver, using GLSL to render geometry. s32 COpenGLDriver::addHighLevelShaderMaterial( const c8* vertexShaderProgram, const c8* vertexShaderEntryPointName, E_VERTEX_SHADER_TYPE vsCompileTarget, const c8* pixelShaderProgram, const c8* pixelShaderEntryPointName, E_PIXEL_SHADER_TYPE psCompileTarget, const c8* geometryShaderProgram, const c8* geometryShaderEntryPointName, E_GEOMETRY_SHADER_TYPE gsCompileTarget, scene::E_PRIMITIVE_TYPE inType, scene::E_PRIMITIVE_TYPE outType, u32 verticesOut, IShaderConstantSetCallBack* callback, E_MATERIAL_TYPE baseMaterial, s32 userData) { s32 nr = -1; COpenGLSLMaterialRenderer* r = new COpenGLSLMaterialRenderer( this, nr, vertexShaderProgram, vertexShaderEntryPointName, vsCompileTarget, pixelShaderProgram, pixelShaderEntryPointName, psCompileTarget, geometryShaderProgram, geometryShaderEntryPointName, gsCompileTarget, inType, outType, verticesOut, callback,getMaterialRenderer(baseMaterial), userData); r->drop(); return nr; } //! Returns a pointer to the IVideoDriver interface. (Implementation for //! IMaterialRendererServices) IVideoDriver* COpenGLDriver::getVideoDriver() { return this; } ITexture* COpenGLDriver::addRenderTargetTexture(const core::dimension2d<u32>& size, const io::path& name, const ECOLOR_FORMAT format) { //disable mip-mapping bool generateMipLevels = getTextureCreationFlag(ETCF_CREATE_MIP_MAPS); setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, false); video::ITexture* rtt = 0; #if defined(GL_EXT_framebuffer_object) // if driver supports FrameBufferObjects, use them if (queryFeature(EVDF_FRAMEBUFFER_OBJECT)) { rtt = new COpenGLFBOTexture(size, name, this, format); if (rtt) { bool success = false; addTexture(rtt); ITexture* tex = createDepthTexture(rtt); if (tex) { success = static_cast<video::COpenGLFBODepthTexture*>(tex)->attach(rtt); if ( !success ) { removeDepthTexture(tex); } tex->drop(); } rtt->drop(); if (!success) { removeTexture(rtt); rtt=0; } } } else #endif { // the simple texture is only possible for size <= screensize // we try to find an optimal size with the original constraints core::dimension2du destSize(core::min_(size.Width,ScreenSize.Width), core::min_(size.Height,ScreenSize.Height)); destSize = destSize.getOptimalSize((size==size.getOptimalSize()), false, false); rtt = addTexture(destSize, name, ECF_A8R8G8B8); if (rtt) { static_cast<video::COpenGLTexture*>(rtt)->setIsRenderTarget(true); } } //restore mip-mapping setTextureCreationFlag(ETCF_CREATE_MIP_MAPS, generateMipLevels); return rtt; } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 COpenGLDriver::getMaximalPrimitiveCount() const { return 0x7fffffff; } //! set or reset render target bool COpenGLDriver::setRenderTarget(video::E_RENDER_TARGET target, bool clearTarget, bool clearZBuffer, SColor color) { if (target != CurrentTarget) setRenderTarget(0, false, false, 0x0); if (ERT_RENDER_TEXTURE == target) { os::Printer::log("For render textures call setRenderTarget with the actual texture as first parameter.", ELL_ERROR); return false; } if (ERT_MULTI_RENDER_TEXTURES == target) { os::Printer::log("For multiple render textures call setRenderTarget with the texture array as first parameter.", ELL_ERROR); return false; } if (Stereo && (ERT_STEREO_RIGHT_BUFFER == target)) { if (Doublebuffer) glDrawBuffer(GL_BACK_RIGHT); else glDrawBuffer(GL_FRONT_RIGHT); } else if (Stereo && ERT_STEREO_BOTH_BUFFERS == target) { if (Doublebuffer) glDrawBuffer(GL_BACK); else glDrawBuffer(GL_FRONT); } else if ((target >= ERT_AUX_BUFFER0) && (target-ERT_AUX_BUFFER0 < MaxAuxBuffers)) { glDrawBuffer(GL_AUX0+target-ERT_AUX_BUFFER0); } else { if (Doublebuffer) glDrawBuffer(GL_BACK_LEFT); else glDrawBuffer(GL_FRONT_LEFT); // exit with false, but also with working color buffer if (target != ERT_FRAME_BUFFER) return false; } CurrentTarget=target; clearBuffers(clearTarget, clearZBuffer, false, color); return true; } //! set or reset render target bool COpenGLDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color) { // check for right driver type if (texture && texture->getDriverType() != EDT_OPENGL) { os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } #if defined(GL_EXT_framebuffer_object) if (CurrentTarget==ERT_MULTI_RENDER_TEXTURES) { for (u32 i=0; i<MRTargets.size(); ++i) { if (MRTargets[i].TargetType==ERT_RENDER_TEXTURE) { for (++i; i<MRTargets.size(); ++i) if (MRTargets[i].TargetType==ERT_RENDER_TEXTURE) extGlFramebufferTexture2D(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT+i, GL_TEXTURE_2D, 0, 0); } } MRTargets.clear(); } #endif // check if we should set the previous RT back if (RenderTargetTexture != texture) { setActiveTexture(0, 0); ResetRenderStates=true; if (RenderTargetTexture!=0) { RenderTargetTexture->unbindRTT(); } if (texture) { // we want to set a new target. so do this. glViewport(0, 0, texture->getSize().Width, texture->getSize().Height); RenderTargetTexture = static_cast<COpenGLTexture*>(texture); RenderTargetTexture->bindRTT(); CurrentRendertargetSize = texture->getSize(); CurrentTarget=ERT_RENDER_TEXTURE; } else { glViewport(0,0,ScreenSize.Width,ScreenSize.Height); RenderTargetTexture = 0; CurrentRendertargetSize = core::dimension2d<u32>(0,0); CurrentTarget=ERT_FRAME_BUFFER; glDrawBuffer(Doublebuffer?GL_BACK_LEFT:GL_FRONT_LEFT); } // we need to update the matrices due to the rendersize change. Transformation3DChanged=true; } clearBuffers(clearBackBuffer, clearZBuffer, false, color); return true; } //! Sets multiple render targets bool COpenGLDriver::setRenderTarget(const core::array<video::IRenderTarget>& targets, bool clearBackBuffer, bool clearZBuffer, SColor color) { // if simply disabling the MRT via array call if (targets.size()==0) return setRenderTarget(0, clearBackBuffer, clearZBuffer, color); // if disabling old MRT, but enabling new one as well if ((MRTargets.size()!=0) && (targets != MRTargets)) setRenderTarget(0, clearBackBuffer, clearZBuffer, color); // if no change, simply clear buffers else if (targets == MRTargets) { clearBuffers(clearBackBuffer, clearZBuffer, false, color); return true; } // copy to storage for correct disabling MRTargets=targets; u32 maxMultipleRTTs = core::min_(static_cast<u32>(MaxMultipleRenderTargets), targets.size()); // determine common size core::dimension2du rttSize = CurrentRendertargetSize; if (targets[0].TargetType==ERT_RENDER_TEXTURE) { if (!targets[0].RenderTexture) { os::Printer::log("Missing render texture for MRT.", ELL_ERROR); return false; } rttSize=targets[0].RenderTexture->getSize(); } for (u32 i = 0; i < maxMultipleRTTs; ++i) { // check for right driver type if (targets[i].TargetType==ERT_RENDER_TEXTURE) { if (!targets[i].RenderTexture) { maxMultipleRTTs=i; os::Printer::log("Missing render texture for MRT.", ELL_WARNING); break; } if (targets[i].RenderTexture->getDriverType() != EDT_OPENGL) { maxMultipleRTTs=i; os::Printer::log("Tried to set a texture not owned by this driver.", ELL_WARNING); break; } // check for valid render target if (!targets[i].RenderTexture->isRenderTarget() || !static_cast<COpenGLTexture*>(targets[i].RenderTexture)->isFrameBufferObject()) { maxMultipleRTTs=i; os::Printer::log("Tried to set a non FBO-RTT as render target.", ELL_WARNING); break; } // check for valid size if (rttSize != targets[i].RenderTexture->getSize()) { maxMultipleRTTs=i; os::Printer::log("Render target texture has wrong size.", ELL_WARNING); break; } } } if (maxMultipleRTTs==0) { os::Printer::log("No valid MRTs.", ELL_ERROR); return false; } // init FBO, if any for (u32 i=0; i<maxMultipleRTTs; ++i) { if (targets[i].TargetType==ERT_RENDER_TEXTURE) { setRenderTarget(targets[i].RenderTexture, false, false, 0x0); break; // bind only first RTT } } // init other main buffer, if necessary if (targets[0].TargetType!=ERT_RENDER_TEXTURE) setRenderTarget(targets[0].TargetType, false, false, 0x0); // attach other textures and store buffers into array if (maxMultipleRTTs > 1) { CurrentTarget=ERT_MULTI_RENDER_TEXTURES; core::array<GLenum> MRTs; MRTs.set_used(maxMultipleRTTs); for(u32 i = 0; i < maxMultipleRTTs; i++) { if (FeatureAvailable[IRR_EXT_draw_buffers2]) { extGlColorMaskIndexed(i, (targets[i].ColorMask & ECP_RED)?GL_TRUE:GL_FALSE, (targets[i].ColorMask & ECP_GREEN)?GL_TRUE:GL_FALSE, (targets[i].ColorMask & ECP_BLUE)?GL_TRUE:GL_FALSE, (targets[i].ColorMask & ECP_ALPHA)?GL_TRUE:GL_FALSE); if (targets[i].BlendEnable) extGlEnableIndexed(GL_BLEND, i); else extGlDisableIndexed(GL_BLEND, i); } if (FeatureAvailable[IRR_AMD_draw_buffers_blend] || FeatureAvailable[IRR_ARB_draw_buffers_blend]) { extGlBlendFuncIndexed(i, getGLBlend(targets[i].BlendFuncSrc), getGLBlend(targets[i].BlendFuncDst)); } if (targets[i].TargetType==ERT_RENDER_TEXTURE) { GLenum attachment = GL_NONE; #ifdef GL_EXT_framebuffer_object // attach texture to FrameBuffer Object on Color [i] attachment = GL_COLOR_ATTACHMENT0_EXT+i; if ((i != 0) && (targets[i].RenderTexture != RenderTargetTexture)) extGlFramebufferTexture2D(GL_FRAMEBUFFER_EXT, attachment, GL_TEXTURE_2D, static_cast<COpenGLTexture*>(targets[i].RenderTexture)->getOpenGLTextureName(), 0); #endif MRTs[i]=attachment; } else { switch(targets[i].TargetType) { case ERT_FRAME_BUFFER: MRTs[i]=GL_BACK_LEFT; break; case ERT_STEREO_BOTH_BUFFERS: MRTs[i]=GL_BACK; break; case ERT_STEREO_RIGHT_BUFFER: MRTs[i]=GL_BACK_RIGHT; break; case ERT_STEREO_LEFT_BUFFER: MRTs[i]=GL_BACK_LEFT; break; default: MRTs[i]=GL_AUX0+(targets[i].TargetType-ERT_AUX_BUFFER0); break; } } } extGlDrawBuffers(maxMultipleRTTs, MRTs.const_pointer()); } clearBuffers(clearBackBuffer, clearZBuffer, false, color); return true; } // returns the current size of the screen or rendertarget const core::dimension2d<u32>& COpenGLDriver::getCurrentRenderTargetSize() const { if (CurrentRendertargetSize.Width == 0) return ScreenSize; else return CurrentRendertargetSize; } //! Clears the ZBuffer. void COpenGLDriver::clearZBuffer() { clearBuffers(false, true, false, 0x0); } //! Returns an image created from the last rendered frame. IImage* COpenGLDriver::createScreenShot() { IImage* newImage = new CImage(ECF_R8G8B8, ScreenSize); u8* pixels = static_cast<u8*>(newImage->lock()); if (!pixels) { newImage->drop(); return 0; } // allows to read pixels in top-to-bottom order #ifdef GL_MESA_pack_invert if (FeatureAvailable[IRR_MESA_pack_invert]) glPixelStorei(GL_PACK_INVERT_MESA, GL_TRUE); #endif // We want to read the front buffer to get the latest render finished. glReadBuffer(GL_FRONT); glReadPixels(0, 0, ScreenSize.Width, ScreenSize.Height, GL_RGB, GL_UNSIGNED_BYTE, pixels); glReadBuffer(GL_BACK); #ifdef GL_MESA_pack_invert if (FeatureAvailable[IRR_MESA_pack_invert]) glPixelStorei(GL_PACK_INVERT_MESA, GL_FALSE); else #endif { // opengl images are horizontally flipped, so we have to fix that here. const s32 pitch=newImage->getPitch(); u8* p2 = pixels + (ScreenSize.Height - 1) * pitch; u8* tmpBuffer = new u8[pitch]; for (u32 i=0; i < ScreenSize.Height; i += 2) { memcpy(tmpBuffer, pixels, pitch); memcpy(pixels, p2, pitch); memcpy(p2, tmpBuffer, pitch); pixels += pitch; p2 -= pitch; } delete [] tmpBuffer; } newImage->unlock(); if (testGLError()) { newImage->drop(); return 0; } return newImage; } //! get depth texture for the given render target texture ITexture* COpenGLDriver::createDepthTexture(ITexture* texture, bool shared) { if ((texture->getDriverType() != EDT_OPENGL) || (!texture->isRenderTarget())) return 0; COpenGLTexture* tex = static_cast<COpenGLTexture*>(texture); if (!tex->isFrameBufferObject()) return 0; if (shared) { for (u32 i=0; i<DepthTextures.size(); ++i) { if (DepthTextures[i]->getSize()==texture->getSize()) { DepthTextures[i]->grab(); return DepthTextures[i]; } } DepthTextures.push_back(new COpenGLFBODepthTexture(texture->getSize(), "depth1", this)); return DepthTextures.getLast(); } return (new COpenGLFBODepthTexture(texture->getSize(), "depth1", this)); } void COpenGLDriver::removeDepthTexture(ITexture* texture) { for (u32 i=0; i<DepthTextures.size(); ++i) { if (texture==DepthTextures[i]) { DepthTextures.erase(i); return; } } } //! Set/unset a clipping plane. bool COpenGLDriver::setClipPlane(u32 index, const core::plane3df& plane, bool enable) { if (index >= MaxUserClipPlanes) return false; UserClipPlanes[index].Plane=plane; enableClipPlane(index, enable); return true; } void COpenGLDriver::uploadClipPlane(u32 index) { // opengl needs an array of doubles for the plane equation double clip_plane[4]; clip_plane[0] = UserClipPlanes[index].Plane.Normal.X; clip_plane[1] = UserClipPlanes[index].Plane.Normal.Y; clip_plane[2] = UserClipPlanes[index].Plane.Normal.Z; clip_plane[3] = UserClipPlanes[index].Plane.D; glClipPlane(GL_CLIP_PLANE0 + index, clip_plane); } //! Enable/disable a clipping plane. void COpenGLDriver::enableClipPlane(u32 index, bool enable) { if (index >= MaxUserClipPlanes) return; if (enable) { if (!UserClipPlanes[index].Enabled) { uploadClipPlane(index); glEnable(GL_CLIP_PLANE0 + index); } } else glDisable(GL_CLIP_PLANE0 + index); UserClipPlanes[index].Enabled=enable; } core::dimension2du COpenGLDriver::getMaxTextureSize() const { return core::dimension2du(MaxTextureSize, MaxTextureSize); } //! Convert E_PRIMITIVE_TYPE to OpenGL equivalent GLenum COpenGLDriver::primitiveTypeToGL(scene::E_PRIMITIVE_TYPE type) const { switch (type) { case scene::EPT_POINTS: return GL_POINTS; case scene::EPT_LINE_STRIP: return GL_LINE_STRIP; case scene::EPT_LINE_LOOP: return GL_LINE_LOOP; case scene::EPT_LINES: return GL_LINES; case scene::EPT_TRIANGLE_STRIP: return GL_TRIANGLE_STRIP; case scene::EPT_TRIANGLE_FAN: return GL_TRIANGLE_FAN; case scene::EPT_TRIANGLES: return GL_TRIANGLES; case scene::EPT_QUAD_STRIP: return GL_QUAD_STRIP; case scene::EPT_QUADS: return GL_QUADS; case scene::EPT_POLYGON: return GL_POLYGON; case scene::EPT_POINT_SPRITES: #ifdef GL_ARB_point_sprite return GL_POINT_SPRITE_ARB; #else return GL_POINTS; #endif } return GL_TRIANGLES; } GLenum COpenGLDriver::getGLBlend (E_BLEND_FACTOR factor) const { u32 r = 0; switch (factor) { case EBF_ZERO: r = GL_ZERO; break; case EBF_ONE: r = GL_ONE; break; case EBF_DST_COLOR: r = GL_DST_COLOR; break; case EBF_ONE_MINUS_DST_COLOR: r = GL_ONE_MINUS_DST_COLOR; break; case EBF_SRC_COLOR: r = GL_SRC_COLOR; break; case EBF_ONE_MINUS_SRC_COLOR: r = GL_ONE_MINUS_SRC_COLOR; break; case EBF_SRC_ALPHA: r = GL_SRC_ALPHA; break; case EBF_ONE_MINUS_SRC_ALPHA: r = GL_ONE_MINUS_SRC_ALPHA; break; case EBF_DST_ALPHA: r = GL_DST_ALPHA; break; case EBF_ONE_MINUS_DST_ALPHA: r = GL_ONE_MINUS_DST_ALPHA; break; case EBF_SRC_ALPHA_SATURATE: r = GL_SRC_ALPHA_SATURATE; break; } return r; } } // end namespace } // end namespace #endif // _IRR_COMPILE_WITH_OPENGL_ namespace irr { namespace video { // ----------------------------------- // WINDOWS VERSION // ----------------------------------- #ifdef _IRR_COMPILE_WITH_WINDOWS_DEVICE_ IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceWin32* device) { #ifdef _IRR_COMPILE_WITH_OPENGL_ COpenGLDriver* ogl = new COpenGLDriver(params, io, device); if (!ogl->initDriver(params, device)) { ogl->drop(); ogl = 0; } return ogl; #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_COMPILE_WITH_WINDOWS_DEVICE_ // ----------------------------------- // MACOSX VERSION // ----------------------------------- #if defined(_IRR_COMPILE_WITH_OSX_DEVICE_) IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceMacOSX *device) { #ifdef _IRR_COMPILE_WITH_OPENGL_ return new COpenGLDriver(params, io, device); #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_COMPILE_WITH_OSX_DEVICE_ // ----------------------------------- // X11 VERSION // ----------------------------------- #ifdef _IRR_COMPILE_WITH_X11_DEVICE_ IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceLinux* device) { #ifdef _IRR_COMPILE_WITH_OPENGL_ COpenGLDriver* ogl = new COpenGLDriver(params, io, device); if (!ogl->initDriver(params, device)) { ogl->drop(); ogl = 0; } return ogl; #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_COMPILE_WITH_X11_DEVICE_ // ----------------------------------- // SDL VERSION // ----------------------------------- #ifdef _IRR_COMPILE_WITH_SDL_DEVICE_ IVideoDriver* createOpenGLDriver(const SIrrlichtCreationParameters& params, io::IFileSystem* io, CIrrDeviceSDL* device) { #ifdef _IRR_COMPILE_WITH_OPENGL_ return new COpenGLDriver(params, io, device); #else return 0; #endif // _IRR_COMPILE_WITH_OPENGL_ } #endif // _IRR_COMPILE_WITH_SDL_DEVICE_ } // end namespace } // end namespace
Options | Liens officiels | Caractéristiques | Statistiques | Communauté |
---|---|---|---|---|
Corrections |
|
xhtml 1.0 css 2.1 Propulsé par FluxBB Traduit par FluxBB.fr |
882 membres 1429 sujets 11119 messages |
Dernier membre inscrit: LiseBuisson96 76 invités en ligne Aucun membre connecté RSS Feed |