Retour
Version Originale

./aip/1.8aipmod/source/Irrlicht/COpenGLParallaxMapRenderer.cpp :


// Copyright (C) 2002-2011 Nikolaus Gebhardt

// This file is part of the "Irrlicht Engine".

// For conditions of distribution and use, see copyright notice in irrlicht.h


#include "IrrCompileConfig.h"
#ifdef _IRR_COMPILE_WITH_OPENGL_

#include "COpenGLParallaxMapRenderer.h"
#include "COpenGLDriver.h"
#include "IGPUProgrammingServices.h"
#include "IShaderConstantSetCallBack.h"
#include "IVideoDriver.h"
#include "os.h"

namespace irr
{
namespace video
{

// Irrlicht Engine OpenGL render path parallax map vertex shader

// I guess it could be optimized a lot, because I wrote it in D3D ASM and

// transferred it 1:1 to OpenGL

const char OPENGL_PARALLAX_MAP_VSH[] =
	"!!ARBvp1.0\n"\
	"#input\n"\
	"# 0-3: transposed world matrix;\n"\
	"#;12: Light01 position \n"\
	"#;13: x,y,z: Light01 color; .w: 1/LightRadius^2 \n"\
	"#;14: Light02 position \n"\
	"#;15: x,y,z: Light02 color; .w: 1/LightRadius^2 \n"\
	"#;16: Eye position \n"\
	"\n"\
	"ATTRIB InPos = vertex.position;\n"\
	"ATTRIB InColor = vertex.color;\n"\
	"ATTRIB InNormal = vertex.normal;\n"\
	"ATTRIB InTexCoord = vertex.texcoord[0];\n"\
	"ATTRIB InTangent = vertex.texcoord[1];\n"\
	"ATTRIB InBinormal = vertex.texcoord[2];\n"\
	"\n"\
	"#output\n"\
	"OUTPUT OutPos = result.position;\n"\
	"OUTPUT OutLightColor1 = result.color.primary;\n"\
	"OUTPUT OutLightColor2 = result.color.secondary;\n"\
	"OUTPUT OutTexCoord = result.texcoord[0];\n"\
	"OUTPUT OutLightVector1 = result.texcoord[1];\n"\
	"OUTPUT OutLightVector2 = result.texcoord[2];\n"\
	"OUTPUT OutEyeVector = result.texcoord[3];\n"\
	"\n"\
	"PARAM MVP[4] = { state.matrix.mvp }; # modelViewProjection matrix.\n"\
	"TEMP Temp;\n"\
	"TEMP TempColor;\n"\
	"TEMP TempLightVector1;\n"\
	"TEMP TempLightVector2;\n"\
	"TEMP TempEyeVector;\n"\
	"TEMP TempTransLightV1;\n"\
	"TEMP TempTransLightV2;\n"\
	"\n"\
	"# transform position to clip space \n"\
	"DP4 OutPos.x, MVP[0], InPos;\n"\
	"DP4 OutPos.y, MVP[1], InPos;\n"\
	"DP4 Temp.z, MVP[2], InPos;\n"\
	"DP4 OutPos.w, MVP[3], InPos;\n"\
	"MOV OutPos.z, Temp.z;\n"\
	"MOV result.fogcoord.x, Temp.z;\n"\
	"\n"\
	"# vertex - lightpositions \n"\
	"SUB TempLightVector1, program.local[12], InPos; \n"\
	"SUB TempLightVector2, program.local[14], InPos; \n"\
	"\n"\
	"# eye vector \n"\
	"SUB Temp, program.local[16], InPos; \n"\
	"\n"\
	"# transform the light vector 1 with U, V, W \n"\
	"DP3 TempTransLightV1.x, InTangent, TempLightVector1; \n"\
	"DP3 TempTransLightV1.y, InBinormal, TempLightVector1; \n"\
	"DP3 TempTransLightV1.z, InNormal, TempLightVector1; \n"\
	"\n"\
	"# transform the light vector 2 with U, V, W \n"\
	"DP3 TempTransLightV2.x, InTangent, TempLightVector2; \n"\
	"DP3 TempTransLightV2.y, InBinormal, TempLightVector2; \n"\
	"DP3 TempTransLightV2.z, InNormal, TempLightVector2; \n"\
	"\n"\
	"# transform the eye vector with U, V, W \n"\
	"DP3 TempEyeVector.x, InTangent, Temp; \n"\
	"DP3 TempEyeVector.y, InBinormal, Temp; \n"\
	"DP3 TempEyeVector.z, InNormal, Temp; \n"\
	"\n"\
	"# normalize light vector 1 \n"\
	"DP3 TempTransLightV1.w, TempTransLightV1, TempTransLightV1; \n"\
	"RSQ TempTransLightV1.w, TempTransLightV1.w; \n"\
	"MUL TempTransLightV1, TempTransLightV1, TempTransLightV1.w;\n"\
	"\n"\
	"# normalize light vector 2 \n"\
	"DP3 TempTransLightV2.w, TempTransLightV2, TempTransLightV2; \n"\
	"RSQ TempTransLightV2.w, TempTransLightV2.w; \n"\
	"MUL TempTransLightV2, TempTransLightV2, TempTransLightV2.w;\n"\
	"\n"\
	"# normalize eye vector \n"\
	"DP3 TempEyeVector.w, TempEyeVector, TempEyeVector; \n"\
	"RSQ TempEyeVector.w, TempEyeVector.w; \n"\
	"MUL TempEyeVector, TempEyeVector, TempEyeVector.w;\n"\
	"MUL TempEyeVector, TempEyeVector, {1,-1,-1,1}; # flip x \n"\
	"\n"\
	"\n"\
	"# move light and eye vectors out\n"\
	"MAD OutLightVector1, TempTransLightV1, {0.5,0.5,0.5,0.5}, {0.5,0.5,0.5,0.5}; \n"\
	"MAD OutLightVector2, TempTransLightV2, {0.5,0.5,0.5,0.5}, {0.5,0.5,0.5,0.5}; \n"\
	"MAD OutEyeVector, TempEyeVector, {0.5,0.5,0.5,0.5}, {0.5,0.5,0.5,0.5}; \n"\
	"\n"\
	"# calculate attenuation of light 1\n"\
	"MOV TempLightVector1.w, {0,0,0,0}; \n"\
	"DP3 TempLightVector1.x, TempLightVector1, TempLightVector1; \n"\
	"MUL TempLightVector1.x, TempLightVector1.x, program.local[13].w;  \n"\
	"RSQ TempLightVector1, TempLightVector1.x; \n"\
	"MUL OutLightColor1, TempLightVector1, program.local[13]; # resulting light color = lightcolor * attenuation \n"\
	"\n"\
	"# calculate attenuation of light 2\n"\
	"MOV TempLightVector2.w, {0,0,0,0}; \n"\
	"DP3 TempLightVector2.x, TempLightVector2, TempLightVector2; \n"\
	"MUL TempLightVector2.x, TempLightVector2.x, program.local[15].w;  \n"\
	"RSQ TempLightVector2, TempLightVector2.x; \n"\
	"MUL OutLightColor2, TempLightVector2, program.local[15]; # resulting light color = lightcolor * attenuation \n"\
	"\n"\
	"# move out texture coordinates and original alpha value\n"\
	"MOV OutTexCoord, InTexCoord; \n"\
	"MOV OutLightColor1.w, InColor.w; \n"\
	"\n"\
	"END\n";

// Irrlicht Engine OpenGL render path parallax map pixel shader

// I guess it could be optimized a bit, because I wrote it in D3D ASM and

// transfered it 1:1 to OpenGL

const char OPENGL_PARALLAX_MAP_PSH[] =
	"!!ARBfp1.0\n"\
	"#_IRR_FOG_MODE_\n"\
	"\n"\
	"#Input\n"\
	"ATTRIB inTexCoord = fragment.texcoord[0];   \n"\
	"ATTRIB light1Vector = fragment.texcoord[1]; \n"\
	"ATTRIB light2Vector = fragment.texcoord[2];    \n"\
	"ATTRIB eyeVector = fragment.texcoord[3];    \n"\
	"ATTRIB light1Color = fragment.color.primary;   \n"\
	"ATTRIB light2Color = fragment.color.secondary; \n"\
	"\n"\
	"#Output\n"\
	"OUTPUT outColor = result.color;\n"\
	"TEMP temp;\n"\
	"TEMP temp2;\n"\
	"TEMP colorMapColor;\n"\
	"TEMP normalMapColor;\n"\
	"\n"\
	"PARAM height_scale = program.local[0]; \n"\
	"# fetch color and normal map; \n"\
	"TXP normalMapColor, inTexCoord, texture[1], 2D; \n"\
	"MAD normalMapColor, normalMapColor, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"\n"\
	"\n"\
	"# extract eye vector (so substract 0.5f and multiply by 2)\n"\
	"MAD temp, eyeVector, {2,2,2,2}, {-1,-1,-1,-1};\n"\
	"\n"\
	"# height = height * scale \n"\
	"MUL normalMapColor, normalMapColor, height_scale;\n"\
	"\n"\
	"# calculate new texture coord: height * eye + oldTexCoord\n"\
	"MAD temp, temp, normalMapColor.wwww, inTexCoord;\n"\
	"\n"\
	"# fetch new textures \n"\
	"TXP colorMapColor, temp, texture[0], 2D; \n"\
	"TXP normalMapColor, temp, texture[1], 2D; \n"\
	"\n"\
	"# calculate color of light1; \n"\
	"MAD normalMapColor, normalMapColor, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"MAD temp, light1Vector, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"DP3_SAT temp, normalMapColor, temp; \n"\
	"MUL temp, light1Color, temp; \n"\
	"\n"\
	"# calculate color of light2; \n"\
	"MAD temp2, light2Vector, {2,2,2,2}, {-1,-1,-1,-1}; \n"\
	"DP3_SAT temp2, normalMapColor, temp2; \n"\
	"MAD temp, light2Color, temp2, temp; \n"\
	"\n"\
	"# luminance * base color; \n"\
	"MUL outColor, temp, colorMapColor; \n"\
	"MOV outColor.a, light1Color.a; #write interpolated vertex alpha value\n"\
	"\n"\
	"END\n";

//! Constructor

COpenGLParallaxMapRenderer::COpenGLParallaxMapRenderer(video::COpenGLDriver* driver,
	s32& outMaterialTypeNr, IMaterialRenderer* baseMaterial)
	: COpenGLShaderMaterialRenderer(driver, 0, baseMaterial), CompiledShaders(true)
{

	#ifdef _DEBUG
	setDebugName("COpenGLParallaxMapRenderer");
	#endif

	// set this as callback. We could have done this in

	// the initialization list, but some compilers don't like it.


	CallBack = this;

	// basically, this simply compiles the hard coded shaders if the

	// hardware is able to do them, otherwise it maps to the base material


	if (!driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1) ||
		!driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
	{
		// this hardware is not able to do shaders. Fall back to

		// base material.

		outMaterialTypeNr = driver->addMaterialRenderer(this);
		return;
	}

	// check if already compiled normal map shaders are there.


	video::IMaterialRenderer* renderer = driver->getMaterialRenderer(EMT_PARALLAX_MAP_SOLID);

	if (renderer)
	{
		// use the already compiled shaders

		video::COpenGLParallaxMapRenderer* nmr = reinterpret_cast<video::COpenGLParallaxMapRenderer*>(renderer);
		CompiledShaders = false;

		VertexShader = nmr->VertexShader;
		PixelShader = nmr->PixelShader;

		outMaterialTypeNr = driver->addMaterialRenderer(this);
	}
	else
	{
		// compile shaders on our own

		init(outMaterialTypeNr, OPENGL_PARALLAX_MAP_VSH, OPENGL_PARALLAX_MAP_PSH, EVT_TANGENTS);
	}

	// fallback if compilation has failed

	if (-1==outMaterialTypeNr)
		outMaterialTypeNr = driver->addMaterialRenderer(this);
}


//! Destructor

COpenGLParallaxMapRenderer::~COpenGLParallaxMapRenderer()
{
	if (CallBack == this)
		CallBack = 0;

	if (!CompiledShaders)
	{
		// prevent this from deleting shaders we did not create

		VertexShader = 0;
		PixelShader.clear();
	}
}


void COpenGLParallaxMapRenderer::OnSetMaterial(const video::SMaterial& material,
	const video::SMaterial& lastMaterial,
	bool resetAllRenderstates, video::IMaterialRendererServices* services)
{
	COpenGLShaderMaterialRenderer::OnSetMaterial(material, lastMaterial,
			resetAllRenderstates, services);

	CurrentScale = material.MaterialTypeParam;
}



//! Returns the render capability of the material.

s32 COpenGLParallaxMapRenderer::getRenderCapability() const
{
	if (Driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1) &&
		Driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
		return 0;

	return 1;
}


//! Called by the engine when the vertex and/or pixel shader constants for an

//! material renderer should be set.

void COpenGLParallaxMapRenderer::OnSetConstants(IMaterialRendererServices* services, s32 userData)
{
	video::IVideoDriver* driver = services->getVideoDriver();

	// set transposed world matrix

	const core::matrix4& tWorld = driver->getTransform(video::ETS_WORLD).getTransposed();
	services->setVertexShaderConstant(tWorld.pointer(), 0, 4);

	// set transposed worldViewProj matrix

	core::matrix4 worldViewProj(driver->getTransform(video::ETS_PROJECTION));
	worldViewProj *= driver->getTransform(video::ETS_VIEW);
	worldViewProj *= driver->getTransform(video::ETS_WORLD);
	core::matrix4 tr(worldViewProj.getTransposed());
	services->setVertexShaderConstant(tr.pointer(), 8, 4);

	// here we fetch the fixed function lights from the driver

	// and set them as constants


	u32 cnt = driver->getDynamicLightCount();

	// Load the inverse world matrix.

	core::matrix4 invWorldMat;
	driver->getTransform(video::ETS_WORLD).getInverse(invWorldMat);

	for (u32 i=0; i<2; ++i)
	{
		video::SLight light;

		if (i<cnt)
			light = driver->getDynamicLight(i);
		else
		{
			light.DiffuseColor.set(0,0,0); // make light dark

			light.Radius = 1.0f;
		}

		light.DiffuseColor.a = 1.0f/(light.Radius*light.Radius); // set attenuation


		// Transform the light by the inverse world matrix to get it into object space.

		invWorldMat.transformVect(light.Position);
		
		services->setVertexShaderConstant(
			reinterpret_cast<const f32*>(&light.Position), 12+(i*2), 1);

		services->setVertexShaderConstant(
			reinterpret_cast<const f32*>(&light.DiffuseColor), 13+(i*2), 1);
	}

	// Obtain the view position by transforming 0,0,0 by the inverse view matrix

	// and then multiply this by the inverse world matrix.

	core::vector3df viewPos(0.0f, 0.0f, 0.0f);
	core::matrix4 inverseView;
	driver->getTransform(video::ETS_VIEW).getInverse(inverseView);
	inverseView.transformVect(viewPos);
	invWorldMat.transformVect(viewPos);
	services->setVertexShaderConstant(reinterpret_cast<const f32*>(&viewPos.X), 16, 1);

	// set scale factor

	f32 factor = 0.02f; // default value

	if (CurrentScale != 0.0f)
		factor = CurrentScale;

	f32 c6[] = {factor, factor, factor, factor};
	services->setPixelShaderConstant(c6, 0, 1);
}


} // end namespace video

} // end namespace irr



#endif

Options Liens officiels Caractéristiques Statistiques Communauté
Corrections
irrlicht
irrklang
irredit
irrxml
xhtml 1.0
css 2.1
Propulsé par FluxBB
Traduit par FluxBB.fr
882 membres
1429 sujets
11119 messages
Dernier membre inscrit: LiseBuisson96
76 invités en ligne
Aucun membre connecté
RSS Feed