// Copyright (C) 2002-2011 Nikolaus Gebhardt / Thomas Alten // This file is part of the "Irrlicht Engine". // For conditions of distribution and use, see copyright notice in irrlicht.h #include "IrrCompileConfig.h" #include "CSoftwareDriver2.h" #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ #include "SoftwareDriver2_helper.h" #include "CSoftwareTexture2.h" #include "CSoftware2MaterialRenderer.h" #include "S3DVertex.h" #include "S4DVertex.h" #define MAT_TEXTURE(tex) ( (video::CSoftwareTexture2*) Material.org.getTexture ( tex ) ) namespace irr { namespace video { namespace glsl { typedef sVec4 vec4; typedef sVec3 vec3; typedef sVec2 vec2; #define in #define uniform #define attribute #define varying #ifdef _MSC_VER #pragma warning(disable:4244) #endif struct mat4{ float m[4][4]; vec4 operator* ( const vec4 &in ) const { vec4 out; return out; } }; struct mat3{ float m[3][3]; vec3 operator* ( const vec3 &in ) const { vec3 out; return out; } }; const int gl_MaxLights = 8; inline float dot (float x, float y) { return x * y; } inline float dot ( const vec2 &x, const vec2 &y) { return x.x * y.x + x.y * y.y; } inline float dot ( const vec3 &x, const vec3 &y) { return x.x * y.x + x.y * y.y + x.z * y.z; } inline float dot ( const vec4 &x, const vec4 &y) { return x.x * y.x + x.y * y.y + x.z * y.z + x.w * y.w; } inline float reflect (float I, float N) { return I - 2.0 * dot (N, I) * N; } inline vec2 reflect (const vec2 &I, const vec2 &N) { return I - N * 2.0 * dot (N, I); } inline vec3 reflect (const vec3 &I, const vec3 &N) { return I - N * 2.0 * dot (N, I); } inline vec4 reflect (const vec4 &I, const vec4 &N) { return I - N * 2.0 * dot (N, I); } inline float refract (float I, float N, float eta){ const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); if (k < 0.0) return 0.0; return eta * I - (eta * dot (N, I) + sqrt (k)) * N; } inline vec2 refract (const vec2 &I, const vec2 &N, float eta){ const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); if (k < 0.0) return vec2 (0.0); return I * eta - N * (eta * dot (N, I) + sqrt (k)); } inline vec3 refract (const vec3 &I, const vec3 &N, float eta) { const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); if (k < 0.0) return vec3 (0.0); return I * eta - N * (eta * dot (N, I) + sqrt (k)); } inline vec4 refract (const vec4 &I, const vec4 &N, float eta) { const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I)); if (k < 0.0) return vec4 (0.0); return I * eta - N * (eta * dot (N, I) + sqrt (k)); } inline float length ( const vec3 &v ) { return sqrtf ( v.x * v.x + v.y * v.y + v.z * v.z ); } vec3 normalize ( const vec3 &v ) { float l = 1.f / length ( v ); return vec3 ( v.x * l, v.y * l, v.z * l ); } float max ( float a, float b ) { return a > b ? a : b; } float min ( float a, float b ) { return a < b ? a : b; } vec4 clamp ( const vec4 &a, f32 low, f32 high ) { return vec4 ( min (max(a.x,low), high), min (max(a.y,low), high), min (max(a.z,low), high), min (max(a.w,low), high) ); } typedef int sampler2D; sampler2D texUnit0; vec4 texture2D (sampler2D sampler, const vec2 &coord) { return vec4 (0.0); } struct gl_LightSourceParameters { vec4 ambient; // Acli vec4 diffuse; // Dcli vec4 specular; // Scli vec4 position; // Ppli vec4 halfVector; // Derived: Hi vec3 spotDirection; // Sdli float spotExponent; // Srli float spotCutoff; // Crli // (range: [0.0,90.0], 180.0) float spotCosCutoff; // Derived: cos(Crli) // (range: [1.0,0.0],-1.0) float constantAttenuation; // K0 float linearAttenuation; // K1 float quadraticAttenuation;// K2 }; uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights]; struct gl_LightModelParameters { vec4 ambient; }; uniform gl_LightModelParameters gl_LightModel; struct gl_LightModelProducts { vec4 sceneColor; }; uniform gl_LightModelProducts gl_FrontLightModelProduct; uniform gl_LightModelProducts gl_BackLightModelProduct; struct gl_LightProducts { vec4 ambient; vec4 diffuse; vec4 specular; }; uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights]; uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights]; struct gl_MaterialParameters { vec4 emission; // Ecm vec4 ambient; // Acm vec4 diffuse; // Dcm vec4 specular; // Scm float shininess; // Srm }; uniform gl_MaterialParameters gl_FrontMaterial; uniform gl_MaterialParameters gl_BackMaterial; // GLSL has some built-in attributes in a vertex shader: attribute vec4 gl_Vertex; // 4D vector representing the vertex position attribute vec3 gl_Normal; // 3D vector representing the vertex normal attribute vec4 gl_Color; // 4D vector representing the vertex color attribute vec4 gl_MultiTexCoord0; // 4D vector representing the texture coordinate of texture unit X attribute vec4 gl_MultiTexCoord1; // 4D vector representing the texture coordinate of texture unit X uniform mat4 gl_ModelViewMatrix; //4x4 Matrix representing the model-view matrix. uniform mat4 gl_ModelViewProjectionMatrix; //4x4 Matrix representing the model-view-projection matrix. uniform mat3 gl_NormalMatrix; //3x3 Matrix representing the inverse transpose model-view matrix. This matrix is used for normal transformation. varying vec4 gl_FrontColor; // 4D vector representing the primitives front color varying vec4 gl_FrontSecondaryColor; // 4D vector representing the primitives second front color varying vec4 gl_BackColor; // 4D vector representing the primitives back color varying vec4 gl_TexCoord[4]; // 4D vector representing the Xth texture coordinate // shader output varying vec4 gl_Position; // 4D vector representing the final processed vertex position. Only available in vertex shader. varying vec4 gl_FragColor; // 4D vector representing the final color which is written in the frame buffer. Only available in fragment shader. varying float gl_FragDepth; // float representing the depth which is written in the depth buffer. Only available in fragment shader. varying vec4 gl_SecondaryColor; varying float gl_FogFragCoord; vec4 ftransform(void) { return gl_ModelViewProjectionMatrix * gl_Vertex; } vec3 fnormal(void) { //Compute the normal vec3 normal = gl_NormalMatrix * gl_Normal; normal = normalize(normal); return normal; } struct program1 { vec4 Ambient; vec4 Diffuse; vec4 Specular; void pointLight(in int i, in vec3 normal, in vec3 eye, in vec3 ecPosition3) { float nDotVP; // normal . light direction float nDotHV; // normal . light half vector float pf; // power factor float attenuation; // computed attenuation factor float d; // distance from surface to light source vec3 VP; // direction from surface to light position vec3 halfVector; // direction of maximum highlights // Compute vector from surface to light position VP = vec3 (gl_LightSource[i].position) - ecPosition3; // Compute distance between surface and light position d = length(VP); // Normalize the vector from surface to light position VP = normalize(VP); // Compute attenuation attenuation = 1.0 / (gl_LightSource[i].constantAttenuation + gl_LightSource[i].linearAttenuation * d + gl_LightSource[i].quadraticAttenuation * d * d); halfVector = normalize(VP + eye); nDotVP = max(0.0, dot(normal, VP)); nDotHV = max(0.0, dot(normal, halfVector)); if (nDotVP == 0.0) { pf = 0.0; } else { pf = pow(nDotHV, gl_FrontMaterial.shininess); } Ambient += gl_LightSource[i].ambient * attenuation; Diffuse += gl_LightSource[i].diffuse * nDotVP * attenuation; Specular += gl_LightSource[i].specular * pf * attenuation; } vec3 fnormal(void) { //Compute the normal vec3 normal = gl_NormalMatrix * gl_Normal; normal = normalize(normal); return normal; } void ftexgen(in vec3 normal, in vec4 ecPosition) { gl_TexCoord[0] = gl_MultiTexCoord0; } void flight(in vec3 normal, in vec4 ecPosition, float alphaFade) { vec4 color; vec3 ecPosition3; vec3 eye; ecPosition3 = (vec3 (ecPosition)) / ecPosition.w; eye = vec3 (0.0, 0.0, 1.0); // Clear the light intensity accumulators Ambient = vec4 (0.0); Diffuse = vec4 (0.0); Specular = vec4 (0.0); pointLight(0, normal, eye, ecPosition3); pointLight(1, normal, eye, ecPosition3); color = gl_FrontLightModelProduct.sceneColor + Ambient * gl_FrontMaterial.ambient + Diffuse * gl_FrontMaterial.diffuse; gl_FrontSecondaryColor = Specular * gl_FrontMaterial.specular; color = clamp( color, 0.0, 1.0 ); gl_FrontColor = color; gl_FrontColor.a *= alphaFade; } void vertexshader_main (void) { vec3 transformedNormal; float alphaFade = 1.0; // Eye-coordinate position of vertex, needed in various calculations vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex; // Do fixed functionality vertex transform gl_Position = ftransform(); transformedNormal = fnormal(); flight(transformedNormal, ecPosition, alphaFade); ftexgen(transformedNormal, ecPosition); } void fragmentshader_main (void) { vec4 color; color = gl_Color; color *= texture2D(texUnit0, vec2(gl_TexCoord[0].x, gl_TexCoord[0].y) ); color += gl_SecondaryColor; color = clamp(color, 0.0, 1.0); gl_FragColor = color; } }; } //! constructor CBurningVideoDriver::CBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter) : CNullDriver(io, params.WindowSize), BackBuffer(0), Presenter(presenter), WindowId(0), SceneSourceRect(0), RenderTargetTexture(0), RenderTargetSurface(0), CurrentShader(0), DepthBuffer(0), StencilBuffer ( 0 ), CurrentOut ( 12 * 2, 128 ), Temp ( 12 * 2, 128 ) { #ifdef _DEBUG setDebugName("CBurningVideoDriver"); #endif // create backbuffer BackBuffer = new CImage(BURNINGSHADER_COLOR_FORMAT, params.WindowSize); if (BackBuffer) { BackBuffer->fill(SColor(0)); // create z buffer if ( params.ZBufferBits ) DepthBuffer = video::createDepthBuffer(BackBuffer->getDimension()); // create stencil buffer if ( params.Stencilbuffer ) StencilBuffer = video::createStencilBuffer(BackBuffer->getDimension()); } DriverAttributes->setAttribute("MaxTextures", 2); DriverAttributes->setAttribute("MaxIndices", 1<<16); DriverAttributes->setAttribute("MaxTextureSize", 1024); DriverAttributes->setAttribute("MaxTextureLODBias", 16.f); DriverAttributes->setAttribute("Version", 45); // create triangle renderers irr::memset32 ( BurningShader, 0, sizeof ( BurningShader ) ); //BurningShader[ETR_FLAT] = createTRFlat2(DepthBuffer); //BurningShader[ETR_FLAT_WIRE] = createTRFlatWire2(DepthBuffer); BurningShader[ETR_GOURAUD] = createTriangleRendererGouraud2(this); BurningShader[ETR_GOURAUD_ALPHA] = createTriangleRendererGouraudAlpha2(this ); BurningShader[ETR_GOURAUD_ALPHA_NOZ] = createTRGouraudAlphaNoZ2(this ); //BurningShader[ETR_GOURAUD_WIRE] = createTriangleRendererGouraudWire2(DepthBuffer); //BurningShader[ETR_TEXTURE_FLAT] = createTriangleRendererTextureFlat2(DepthBuffer); //BurningShader[ETR_TEXTURE_FLAT_WIRE] = createTriangleRendererTextureFlatWire2(DepthBuffer); BurningShader[ETR_TEXTURE_GOURAUD] = createTriangleRendererTextureGouraud2(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M1] = createTriangleRendererTextureLightMap2_M1(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M2] = createTriangleRendererTextureLightMap2_M2(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_M4] = createTriangleRendererGTextureLightMap2_M4(this); BurningShader[ETR_TEXTURE_LIGHTMAP_M4] = createTriangleRendererTextureLightMap2_M4(this); BurningShader[ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD] = createTriangleRendererTextureLightMap2_Add(this); BurningShader[ETR_TEXTURE_GOURAUD_DETAIL_MAP] = createTriangleRendererTextureDetailMap2(this); BurningShader[ETR_TEXTURE_GOURAUD_WIRE] = createTriangleRendererTextureGouraudWire2(this); BurningShader[ETR_TEXTURE_GOURAUD_NOZ] = createTRTextureGouraudNoZ2(this); BurningShader[ETR_TEXTURE_GOURAUD_ADD] = createTRTextureGouraudAdd2(this); BurningShader[ETR_TEXTURE_GOURAUD_ADD_NO_Z] = createTRTextureGouraudAddNoZ2(this); BurningShader[ETR_TEXTURE_GOURAUD_VERTEX_ALPHA] = createTriangleRendererTextureVertexAlpha2 ( this ); BurningShader[ETR_TEXTURE_GOURAUD_ALPHA] = createTRTextureGouraudAlpha(this ); BurningShader[ETR_TEXTURE_GOURAUD_ALPHA_NOZ] = createTRTextureGouraudAlphaNoZ( this ); BurningShader[ETR_NORMAL_MAP_SOLID] = createTRNormalMap ( this ); BurningShader[ETR_STENCIL_SHADOW] = createTRStencilShadow ( this ); BurningShader[ETR_TEXTURE_BLEND] = createTRTextureBlend( this ); BurningShader[ETR_REFERENCE] = createTriangleRendererReference ( this ); // add the same renderer for all solid types CSoftware2MaterialRenderer_SOLID* smr = new CSoftware2MaterialRenderer_SOLID( this); CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR* tmr = new CSoftware2MaterialRenderer_TRANSPARENT_ADD_COLOR( this); CSoftware2MaterialRenderer_UNSUPPORTED * umr = new CSoftware2MaterialRenderer_UNSUPPORTED ( this ); //!TODO: addMaterialRenderer depends on pushing order.... addMaterialRenderer ( smr ); // EMT_SOLID addMaterialRenderer ( smr ); // EMT_SOLID_2_LAYER, addMaterialRenderer ( smr ); // EMT_LIGHTMAP, addMaterialRenderer ( tmr ); // EMT_LIGHTMAP_ADD, addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M2, addMaterialRenderer ( smr ); // EMT_LIGHTMAP_M4, addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING, addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M2, addMaterialRenderer ( smr ); // EMT_LIGHTMAP_LIGHTING_M4, addMaterialRenderer ( smr ); // EMT_DETAIL_MAP, addMaterialRenderer ( umr ); // EMT_SPHERE_MAP, addMaterialRenderer ( smr ); // EMT_REFLECTION_2_LAYER, addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ADD_COLOR, addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL, addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_ALPHA_CHANNEL_REF, addMaterialRenderer ( tmr ); // EMT_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer ( smr ); // EMT_TRANSPARENT_REFLECTION_2_LAYER, addMaterialRenderer ( smr ); // EMT_NORMAL_MAP_SOLID, addMaterialRenderer ( umr ); // EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR, addMaterialRenderer ( tmr ); // EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer ( smr ); // EMT_PARALLAX_MAP_SOLID, addMaterialRenderer ( tmr ); // EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR, addMaterialRenderer ( tmr ); // EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA, addMaterialRenderer ( tmr ); // EMT_ONETEXTURE_BLEND smr->drop (); tmr->drop (); umr->drop (); // select render target setRenderTarget(BackBuffer); //reset Lightspace LightSpace.reset (); // select the right renderer setCurrentShader(); } //! destructor CBurningVideoDriver::~CBurningVideoDriver() { // delete Backbuffer if (BackBuffer) BackBuffer->drop(); // delete triangle renderers for (s32 i=0; i<ETR2_COUNT; ++i) { if (BurningShader[i]) BurningShader[i]->drop(); } // delete Additional buffer if (StencilBuffer) StencilBuffer->drop(); if (DepthBuffer) DepthBuffer->drop(); if (RenderTargetTexture) RenderTargetTexture->drop(); if (RenderTargetSurface) RenderTargetSurface->drop(); } /*! selects the right triangle renderer based on the render states. */ void CBurningVideoDriver::setCurrentShader() { ITexture *texture0 = Material.org.getTexture(0); ITexture *texture1 = Material.org.getTexture(1); bool zMaterialTest = Material.org.ZBuffer != ECFN_NEVER && Material.org.ZWriteEnable && ( AllowZWriteOnTransparent || !Material.org.isTransparent() ); EBurningFFShader shader = zMaterialTest ? ETR_TEXTURE_GOURAUD : ETR_TEXTURE_GOURAUD_NOZ; TransformationFlag[ ETS_TEXTURE_0] &= ~(ETF_TEXGEN_CAMERA_NORMAL|ETF_TEXGEN_CAMERA_REFLECTION); LightSpace.Flags &= ~VERTEXTRANSFORM; switch ( Material.org.MaterialType ) { case EMT_ONETEXTURE_BLEND: shader = ETR_TEXTURE_BLEND; break; case EMT_TRANSPARENT_ALPHA_CHANNEL_REF: Material.org.MaterialTypeParam = 0.5f; // fall through case EMT_TRANSPARENT_ALPHA_CHANNEL: if ( texture0 && texture0->hasAlpha () ) { shader = zMaterialTest ? ETR_TEXTURE_GOURAUD_ALPHA : ETR_TEXTURE_GOURAUD_ALPHA_NOZ; break; } // fall through case EMT_TRANSPARENT_ADD_COLOR: shader = zMaterialTest ? ETR_TEXTURE_GOURAUD_ADD : ETR_TEXTURE_GOURAUD_ADD_NO_Z; break; case EMT_TRANSPARENT_VERTEX_ALPHA: shader = ETR_TEXTURE_GOURAUD_VERTEX_ALPHA; break; case EMT_LIGHTMAP: case EMT_LIGHTMAP_LIGHTING: shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1; break; case EMT_LIGHTMAP_M2: case EMT_LIGHTMAP_LIGHTING_M2: shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M2; break; case EMT_LIGHTMAP_LIGHTING_M4: if ( texture1 ) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M4; break; case EMT_LIGHTMAP_M4: if ( texture1 ) shader = ETR_TEXTURE_LIGHTMAP_M4; break; case EMT_LIGHTMAP_ADD: if ( texture1 ) shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_ADD; break; case EMT_DETAIL_MAP: shader = ETR_TEXTURE_GOURAUD_DETAIL_MAP; break; case EMT_SPHERE_MAP: TransformationFlag[ ETS_TEXTURE_0] |= ETF_TEXGEN_CAMERA_REFLECTION; // ETF_TEXGEN_CAMERA_NORMAL; LightSpace.Flags |= VERTEXTRANSFORM; break; case EMT_REFLECTION_2_LAYER: shader = ETR_TEXTURE_GOURAUD_LIGHTMAP_M1; TransformationFlag[ ETS_TEXTURE_1] |= ETF_TEXGEN_CAMERA_REFLECTION; LightSpace.Flags |= VERTEXTRANSFORM; break; case EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA: case EMT_NORMAL_MAP_SOLID: case EMT_PARALLAX_MAP_SOLID: case EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA: shader = ETR_NORMAL_MAP_SOLID; LightSpace.Flags |= VERTEXTRANSFORM; break; default: break; } if ( !texture0 ) { shader = ETR_GOURAUD; } if ( Material.org.Wireframe ) { shader = ETR_TEXTURE_GOURAUD_WIRE; } //shader = ETR_REFERENCE; // switchToTriangleRenderer CurrentShader = BurningShader[shader]; if ( CurrentShader ) { CurrentShader->setZCompareFunc ( Material.org.ZBuffer ); CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort); CurrentShader->setMaterial ( Material ); switch ( shader ) { case ETR_TEXTURE_GOURAUD_ALPHA: case ETR_TEXTURE_GOURAUD_ALPHA_NOZ: case ETR_TEXTURE_BLEND: CurrentShader->setParam ( 0, Material.org.MaterialTypeParam ); break; default: break; } } } //! queries the features of the driver, returns true if feature is available bool CBurningVideoDriver::queryFeature(E_VIDEO_DRIVER_FEATURE feature) const { if (!FeatureEnabled[feature]) return false; switch (feature) { #ifdef SOFTWARE_DRIVER_2_BILINEAR case EVDF_BILINEAR_FILTER: return true; #endif #ifdef SOFTWARE_DRIVER_2_MIPMAPPING case EVDF_MIP_MAP: return true; #endif case EVDF_STENCIL_BUFFER: case EVDF_RENDER_TO_TARGET: case EVDF_MULTITEXTURE: case EVDF_HARDWARE_TL: case EVDF_TEXTURE_NSQUARE: return true; default: return false; } } //! sets transformation void CBurningVideoDriver::setTransform(E_TRANSFORMATION_STATE state, const core::matrix4& mat) { Transformation[state] = mat; core::setbit_cond ( TransformationFlag[state], mat.isIdentity(), ETF_IDENTITY ); switch ( state ) { case ETS_VIEW: Transformation[ETS_VIEW_PROJECTION].setbyproduct_nocheck ( Transformation[ETS_PROJECTION], Transformation[ETS_VIEW] ); getCameraPosWorldSpace (); break; case ETS_WORLD: if ( TransformationFlag[state] & ETF_IDENTITY ) { Transformation[ETS_WORLD_INVERSE] = Transformation[ETS_WORLD]; TransformationFlag[ETS_WORLD_INVERSE] |= ETF_IDENTITY; Transformation[ETS_CURRENT] = Transformation[ETS_VIEW_PROJECTION]; } else { //Transformation[ETS_WORLD].getInversePrimitive ( Transformation[ETS_WORLD_INVERSE] ); Transformation[ETS_CURRENT].setbyproduct_nocheck ( Transformation[ETS_VIEW_PROJECTION], Transformation[ETS_WORLD] ); } TransformationFlag[ETS_CURRENT] = 0; //getLightPosObjectSpace (); break; case ETS_TEXTURE_0: case ETS_TEXTURE_1: case ETS_TEXTURE_2: case ETS_TEXTURE_3: if ( 0 == (TransformationFlag[state] & ETF_IDENTITY ) ) LightSpace.Flags |= VERTEXTRANSFORM; default: break; } } //! clears the zbuffer bool CBurningVideoDriver::beginScene(bool backBuffer, bool zBuffer, SColor color, const SExposedVideoData& videoData, core::rect<s32>* sourceRect) { CNullDriver::beginScene(backBuffer, zBuffer, color, videoData, sourceRect); WindowId = videoData.D3D9.HWnd; SceneSourceRect = sourceRect; if (backBuffer && BackBuffer) BackBuffer->fill(color); if (zBuffer && DepthBuffer) DepthBuffer->clear(); memset ( TransformationFlag, 0, sizeof ( TransformationFlag ) ); return true; } //! presents the rendered scene on the screen, returns false if failed bool CBurningVideoDriver::endScene() { CNullDriver::endScene(); return Presenter->present(BackBuffer, WindowId, SceneSourceRect); } //! sets a render target bool CBurningVideoDriver::setRenderTarget(video::ITexture* texture, bool clearBackBuffer, bool clearZBuffer, SColor color) { if (texture && texture->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to set a texture not owned by this driver.", ELL_ERROR); return false; } if (RenderTargetTexture) RenderTargetTexture->drop(); RenderTargetTexture = texture; if (RenderTargetTexture) { RenderTargetTexture->grab(); setRenderTarget(((CSoftwareTexture2*)RenderTargetTexture)->getTexture()); } else { setRenderTarget(BackBuffer); } if (RenderTargetSurface && (clearBackBuffer || clearZBuffer)) { if (clearZBuffer) DepthBuffer->clear(); if (clearBackBuffer) RenderTargetSurface->fill( color ); } return true; } //! sets a render target void CBurningVideoDriver::setRenderTarget(video::CImage* image) { if (RenderTargetSurface) RenderTargetSurface->drop(); RenderTargetSurface = image; RenderTargetSize.Width = 0; RenderTargetSize.Height = 0; if (RenderTargetSurface) { RenderTargetSurface->grab(); RenderTargetSize = RenderTargetSurface->getDimension(); } setViewPort(core::rect<s32>(0,0,RenderTargetSize.Width,RenderTargetSize.Height)); if (DepthBuffer) DepthBuffer->setSize(RenderTargetSize); if (StencilBuffer) StencilBuffer->setSize(RenderTargetSize); } //! sets a viewport void CBurningVideoDriver::setViewPort(const core::rect<s32>& area) { ViewPort = area; core::rect<s32> rendert(0,0,RenderTargetSize.Width,RenderTargetSize.Height); ViewPort.clipAgainst(rendert); Transformation [ ETS_CLIPSCALE ].buildNDCToDCMatrix ( ViewPort, 1 ); if (CurrentShader) CurrentShader->setRenderTarget(RenderTargetSurface, ViewPort); } /* generic plane clipping in homogenous coordinates special case ndc frustum <-w,w>,<-w,w>,<-w,w> can be rewritten with compares e.q near plane, a.z < -a.w and b.z < -b.w */ const sVec4 CBurningVideoDriver::NDCPlane[6] = { sVec4( 0.f, 0.f, -1.f, -1.f ), // near sVec4( 0.f, 0.f, 1.f, -1.f ), // far sVec4( 1.f, 0.f, 0.f, -1.f ), // left sVec4( -1.f, 0.f, 0.f, -1.f ), // right sVec4( 0.f, 1.f, 0.f, -1.f ), // bottom sVec4( 0.f, -1.f, 0.f, -1.f ) // top }; /* test a vertex if it's inside the standard frustum this is the generic one.. f32 dotPlane; for ( u32 i = 0; i!= 6; ++i ) { dotPlane = v->Pos.dotProduct ( NDCPlane[i] ); core::setbit_cond( flag, dotPlane <= 0.f, 1 << i ); } // this is the base for ndc frustum <-w,w>,<-w,w>,<-w,w> core::setbit_cond( flag, ( v->Pos.z - v->Pos.w ) <= 0.f, 1 ); core::setbit_cond( flag, (-v->Pos.z - v->Pos.w ) <= 0.f, 2 ); core::setbit_cond( flag, ( v->Pos.x - v->Pos.w ) <= 0.f, 4 ); core::setbit_cond( flag, (-v->Pos.x - v->Pos.w ) <= 0.f, 8 ); core::setbit_cond( flag, ( v->Pos.y - v->Pos.w ) <= 0.f, 16 ); core::setbit_cond( flag, (-v->Pos.y - v->Pos.w ) <= 0.f, 32 ); */ #ifdef IRRLICHT_FAST_MATH REALINLINE u32 CBurningVideoDriver::clipToFrustumTest ( const s4DVertex * v ) const { f32 test[6]; u32 flag; const f32 w = - v->Pos.w; // a conditional move is needed....FCOMI ( but we don't have it ) // so let the fpu calculate and write it back. // cpu makes the compare, interleaving test[0] = v->Pos.z + w; test[1] = -v->Pos.z + w; test[2] = v->Pos.x + w; test[3] = -v->Pos.x + w; test[4] = v->Pos.y + w; test[5] = -v->Pos.y + w; flag = (IR ( test[0] ) ) >> 31; flag |= (IR ( test[1] ) & 0x80000000 ) >> 30; flag |= (IR ( test[2] ) & 0x80000000 ) >> 29; flag |= (IR ( test[3] ) & 0x80000000 ) >> 28; flag |= (IR ( test[4] ) & 0x80000000 ) >> 27; flag |= (IR ( test[5] ) & 0x80000000 ) >> 26; /* flag = F32_LOWER_EQUAL_0 ( test[0] ); flag |= F32_LOWER_EQUAL_0 ( test[1] ) << 1; flag |= F32_LOWER_EQUAL_0 ( test[2] ) << 2; flag |= F32_LOWER_EQUAL_0 ( test[3] ) << 3; flag |= F32_LOWER_EQUAL_0 ( test[4] ) << 4; flag |= F32_LOWER_EQUAL_0 ( test[5] ) << 5; */ return flag; } #else REALINLINE u32 CBurningVideoDriver::clipToFrustumTest ( const s4DVertex * v ) const { u32 flag = 0; if ( v->Pos.z <= v->Pos.w ) flag |= 1; if (-v->Pos.z <= v->Pos.w ) flag |= 2; if ( v->Pos.x <= v->Pos.w ) flag |= 4; if (-v->Pos.x <= v->Pos.w ) flag |= 8; if ( v->Pos.y <= v->Pos.w ) flag |= 16; if (-v->Pos.y <= v->Pos.w ) flag |= 32; /* for ( u32 i = 0; i!= 6; ++i ) { core::setbit_cond( flag, v->Pos.dotProduct ( NDCPlane[i] ) <= 0.f, 1 << i ); } */ return flag; } #endif // _MSC_VER u32 CBurningVideoDriver::clipToHyperPlane ( s4DVertex * dest, const s4DVertex * source, u32 inCount, const sVec4 &plane ) { u32 outCount = 0; s4DVertex * out = dest; const s4DVertex * a; const s4DVertex * b = source; f32 bDotPlane; bDotPlane = b->Pos.dotProduct ( plane ); for( u32 i = 1; i < inCount + 1; ++i) { const s32 condition = i - inCount; const s32 index = (( ( condition >> 31 ) & ( i ^ condition ) ) ^ condition ) << 1; a = &source[ index ]; // current point inside if ( a->Pos.dotProduct ( plane ) <= 0.f ) { // last point outside if ( F32_GREATER_0 ( bDotPlane ) ) { // intersect line segment with plane out->interpolate ( *b, *a, bDotPlane / (b->Pos - a->Pos).dotProduct ( plane ) ); out += 2; outCount += 1; } // copy current to out //*out = *a; irr::memcpy32_small ( out, a, SIZEOF_SVERTEX * 2 ); b = out; out += 2; outCount += 1; } else { // current point outside if ( F32_LOWER_EQUAL_0 ( bDotPlane ) ) { // previous was inside // intersect line segment with plane out->interpolate ( *b, *a, bDotPlane / (b->Pos - a->Pos).dotProduct ( plane ) ); out += 2; outCount += 1; } // pointer b = a; } bDotPlane = b->Pos.dotProduct ( plane ); } return outCount; } u32 CBurningVideoDriver::clipToFrustum ( s4DVertex *v0, s4DVertex * v1, const u32 vIn ) { u32 vOut = vIn; vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[0] ); if ( vOut < vIn ) return vOut; vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[1] ); if ( vOut < vIn ) return vOut; vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[2] ); if ( vOut < vIn ) return vOut; vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[3] ); if ( vOut < vIn ) return vOut; vOut = clipToHyperPlane ( v1, v0, vOut, NDCPlane[4] ); if ( vOut < vIn ) return vOut; vOut = clipToHyperPlane ( v0, v1, vOut, NDCPlane[5] ); return vOut; } /*! Part I: apply Clip Scale matrix From Normalized Device Coordiante ( NDC ) Space to Device Coordinate Space ( DC ) Part II: Project homogeneous vector homogeneous to non-homogenous coordinates ( dividebyW ) Incoming: ( xw, yw, zw, w, u, v, 1, R, G, B, A ) Outgoing: ( xw/w, yw/w, zw/w, w/w, u/w, v/w, 1/w, R/w, G/w, B/w, A/w ) replace w/w by 1/w */ inline void CBurningVideoDriver::ndc_2_dc_and_project ( s4DVertex *dest,s4DVertex *source, u32 vIn ) const { u32 g; for ( g = 0; g != vIn; g += 2 ) { if ( (dest[g].flag & VERTEX4D_PROJECTED ) == VERTEX4D_PROJECTED ) continue; dest[g].flag = source[g].flag | VERTEX4D_PROJECTED; const f32 w = source[g].Pos.w; const f32 iw = core::reciprocal ( w ); // to device coordinates dest[g].Pos.x = iw * ( source[g].Pos.x * Transformation [ ETS_CLIPSCALE ][ 0] + w * Transformation [ ETS_CLIPSCALE ][12] ); dest[g].Pos.y = iw * ( source[g].Pos.y * Transformation [ ETS_CLIPSCALE ][ 5] + w * Transformation [ ETS_CLIPSCALE ][13] ); #ifndef SOFTWARE_DRIVER_2_USE_WBUFFER dest[g].Pos.z = iw * source[g].Pos.z; #endif #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT dest[g].Color[0] = source[g].Color[0] * iw; #else dest[g].Color[0] = source[g].Color[0]; #endif #endif dest[g].LightTangent[0] = source[g].LightTangent[0] * iw; dest[g].Pos.w = iw; } } inline void CBurningVideoDriver::ndc_2_dc_and_project2 ( const s4DVertex **v, const u32 size ) const { u32 g; for ( g = 0; g != size; g += 1 ) { s4DVertex * a = (s4DVertex*) v[g]; if ( (a[1].flag & VERTEX4D_PROJECTED ) == VERTEX4D_PROJECTED ) continue; a[1].flag = a->flag | VERTEX4D_PROJECTED; // project homogenous vertex, store 1/w const f32 w = a->Pos.w; const f32 iw = core::reciprocal ( w ); // to device coordinates const f32 * p = Transformation [ ETS_CLIPSCALE ].pointer(); a[1].Pos.x = iw * ( a->Pos.x * p[ 0] + w * p[12] ); a[1].Pos.y = iw * ( a->Pos.y * p[ 5] + w * p[13] ); #ifndef SOFTWARE_DRIVER_2_USE_WBUFFER a[1].Pos.z = a->Pos.z * iw; #endif #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT a[1].Color[0] = a->Color[0] * iw; #else a[1].Color[0] = a->Color[0]; #endif #endif a[1].LightTangent[0] = a[0].LightTangent[0] * iw; a[1].Pos.w = iw; } } /*! crossproduct in projected 2D -> screen area triangle */ inline f32 CBurningVideoDriver::screenarea ( const s4DVertex *v ) const { return ( ( v[3].Pos.x - v[1].Pos.x ) * ( v[5].Pos.y - v[1].Pos.y ) ) - ( ( v[3].Pos.y - v[1].Pos.y ) * ( v[5].Pos.x - v[1].Pos.x ) ); } /*! */ inline f32 CBurningVideoDriver::texelarea ( const s4DVertex *v, int tex ) const { f32 z; z = ( (v[2].Tex[tex].x - v[0].Tex[tex].x ) * (v[4].Tex[tex].y - v[0].Tex[tex].y ) ) - ( (v[4].Tex[tex].x - v[0].Tex[tex].x ) * (v[2].Tex[tex].y - v[0].Tex[tex].y ) ); return MAT_TEXTURE ( tex )->getLODFactor ( z ); } /*! crossproduct in projected 2D */ inline f32 CBurningVideoDriver::screenarea2 ( const s4DVertex **v ) const { return ( (( v[1] + 1 )->Pos.x - (v[0] + 1 )->Pos.x ) * ( (v[2] + 1 )->Pos.y - (v[0] + 1 )->Pos.y ) ) - ( (( v[1] + 1 )->Pos.y - (v[0] + 1 )->Pos.y ) * ( (v[2] + 1 )->Pos.x - (v[0] + 1 )->Pos.x ) ); } /*! */ inline f32 CBurningVideoDriver::texelarea2 ( const s4DVertex **v, s32 tex ) const { f32 z; z = ( (v[1]->Tex[tex].x - v[0]->Tex[tex].x ) * (v[2]->Tex[tex].y - v[0]->Tex[tex].y ) ) - ( (v[2]->Tex[tex].x - v[0]->Tex[tex].x ) * (v[1]->Tex[tex].y - v[0]->Tex[tex].y ) ); return MAT_TEXTURE ( tex )->getLODFactor ( z ); } /*! */ inline void CBurningVideoDriver::select_polygon_mipmap ( s4DVertex *v, u32 vIn, u32 tex, const core::dimension2du& texSize ) const { f32 f[2]; f[0] = (f32) texSize.Width - 0.25f; f[1] = (f32) texSize.Height - 0.25f; #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT for ( u32 g = 0; g != vIn; g += 2 ) { (v + g + 1 )->Tex[tex].x = (v + g + 0)->Tex[tex].x * ( v + g + 1 )->Pos.w * f[0]; (v + g + 1 )->Tex[tex].y = (v + g + 0)->Tex[tex].y * ( v + g + 1 )->Pos.w * f[1]; } #else for ( u32 g = 0; g != vIn; g += 2 ) { (v + g + 1 )->Tex[tex].x = (v + g + 0)->Tex[tex].x * f[0]; (v + g + 1 )->Tex[tex].y = (v + g + 0)->Tex[tex].y * f[1]; } #endif } inline void CBurningVideoDriver::select_polygon_mipmap2 ( s4DVertex **v, u32 tex, const core::dimension2du& texSize ) const { f32 f[2]; f[0] = (f32) texSize.Width - 0.25f; f[1] = (f32) texSize.Height - 0.25f; #ifdef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT (v[0] + 1 )->Tex[tex].x = v[0]->Tex[tex].x * ( v[0] + 1 )->Pos.w * f[0]; (v[0] + 1 )->Tex[tex].y = v[0]->Tex[tex].y * ( v[0] + 1 )->Pos.w * f[1]; (v[1] + 1 )->Tex[tex].x = v[1]->Tex[tex].x * ( v[1] + 1 )->Pos.w * f[0]; (v[1] + 1 )->Tex[tex].y = v[1]->Tex[tex].y * ( v[1] + 1 )->Pos.w * f[1]; (v[2] + 1 )->Tex[tex].x = v[2]->Tex[tex].x * ( v[2] + 1 )->Pos.w * f[0]; (v[2] + 1 )->Tex[tex].y = v[2]->Tex[tex].y * ( v[2] + 1 )->Pos.w * f[1]; #else (v[0] + 1 )->Tex[tex].x = v[0]->Tex[tex].x * f[0]; (v[0] + 1 )->Tex[tex].y = v[0]->Tex[tex].y * f[1]; (v[1] + 1 )->Tex[tex].x = v[1]->Tex[tex].x * f[0]; (v[1] + 1 )->Tex[tex].y = v[1]->Tex[tex].y * f[1]; (v[2] + 1 )->Tex[tex].x = v[2]->Tex[tex].x * f[0]; (v[2] + 1 )->Tex[tex].y = v[2]->Tex[tex].y * f[1]; #endif } // Vertex Cache const SVSize CBurningVideoDriver::vSize[] = { { VERTEX4D_FORMAT_TEXTURE_1 | VERTEX4D_FORMAT_COLOR_1, sizeof(S3DVertex), 1 }, { VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1, sizeof(S3DVertex2TCoords),2 }, { VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1 | VERTEX4D_FORMAT_BUMP_DOT3, sizeof(S3DVertexTangents),2 }, { VERTEX4D_FORMAT_TEXTURE_2 | VERTEX4D_FORMAT_COLOR_1, sizeof(S3DVertex), 2 }, // reflection map { 0, sizeof(f32) * 3, 0 }, // core::vector3df* }; /*! fill a cache line with transformed, light and clipp test triangles */ void CBurningVideoDriver::VertexCache_fill(const u32 sourceIndex, const u32 destIndex) { u8 * source; s4DVertex *dest; source = (u8*) VertexCache.vertices + ( sourceIndex * vSize[VertexCache.vType].Pitch ); // it's a look ahead so we never hit it.. // but give priority... //VertexCache.info[ destIndex ].hit = hitCount; // store info VertexCache.info[ destIndex ].index = sourceIndex; VertexCache.info[ destIndex ].hit = 0; // destination Vertex dest = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( destIndex << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ); // transform Model * World * Camera * Projection * NDCSpace matrix const S3DVertex *base = ((S3DVertex*) source ); Transformation [ ETS_CURRENT].transformVect ( &dest->Pos.x, base->Pos ); //mhm ;-) maybe no goto if ( VertexCache.vType == 4 ) goto clipandproject; #if defined (SOFTWARE_DRIVER_2_LIGHTING) || defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM ) // vertex normal in light space if ( Material.org.Lighting || (LightSpace.Flags & VERTEXTRANSFORM) ) { if ( TransformationFlag[ETS_WORLD] & ETF_IDENTITY ) { LightSpace.normal.set ( base->Normal.X, base->Normal.Y, base->Normal.Z, 1.f ); LightSpace.vertex.set ( base->Pos.X, base->Pos.Y, base->Pos.Z, 1.f ); } else { Transformation[ETS_WORLD].rotateVect ( &LightSpace.normal.x, base->Normal ); // vertex in light space if ( LightSpace.Flags & ( POINTLIGHT | FOG | SPECULAR | VERTEXTRANSFORM) ) Transformation[ETS_WORLD].transformVect ( &LightSpace.vertex.x, base->Pos ); } if ( LightSpace.Flags & NORMALIZE ) LightSpace.normal.normalize_xyz(); } #endif #if defined ( SOFTWARE_DRIVER_2_USE_VERTEX_COLOR ) // apply lighting model #if defined (SOFTWARE_DRIVER_2_LIGHTING) if ( Material.org.Lighting ) { lightVertex ( dest, base->Color.color ); } else { dest->Color[0].setA8R8G8B8 ( base->Color.color ); } #else dest->Color[0].setA8R8G8B8 ( base->Color.color ); #endif #endif // Texture Transform #if !defined ( SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM ) irr::memcpy32_small ( &dest->Tex[0],&base->TCoords, vSize[VertexCache.vType].TexSize << 3 // * ( sizeof ( f32 ) * 2 ) ); #else if ( 0 == (LightSpace.Flags & VERTEXTRANSFORM) ) { irr::memcpy32_small ( &dest->Tex[0],&base->TCoords, vSize[VertexCache.vType].TexSize << 3 // * ( sizeof ( f32 ) * 2 ) ); } else { /* Generate texture coordinates as linear functions so that: u = Ux*x + Uy*y + Uz*z + Uw v = Vx*x + Vy*y + Vz*z + Vw The matrix M for this case is: Ux Vx 0 0 Uy Vy 0 0 Uz Vz 0 0 Uw Vw 0 0 */ u32 t; sVec4 n; sVec2 srcT; for ( t = 0; t != vSize[VertexCache.vType].TexSize; ++t ) { const core::matrix4& M = Transformation [ ETS_TEXTURE_0 + t ]; // texgen if ( TransformationFlag [ ETS_TEXTURE_0 + t ] & (ETF_TEXGEN_CAMERA_NORMAL|ETF_TEXGEN_CAMERA_REFLECTION) ) { n.x = LightSpace.campos.x - LightSpace.vertex.x; n.y = LightSpace.campos.x - LightSpace.vertex.y; n.z = LightSpace.campos.x - LightSpace.vertex.z; n.normalize_xyz(); n.x += LightSpace.normal.x; n.y += LightSpace.normal.y; n.z += LightSpace.normal.z; n.normalize_xyz(); const f32 *view = Transformation[ETS_VIEW].pointer(); if ( TransformationFlag [ ETS_TEXTURE_0 + t ] & ETF_TEXGEN_CAMERA_REFLECTION ) { srcT.x = 0.5f * ( 1.f + (n.x * view[0] + n.y * view[4] + n.z * view[8] )); srcT.y = 0.5f * ( 1.f + (n.x * view[1] + n.y * view[5] + n.z * view[9] )); } else { srcT.x = 0.5f * ( 1.f + (n.x * view[0] + n.y * view[1] + n.z * view[2] )); srcT.y = 0.5f * ( 1.f + (n.x * view[4] + n.y * view[5] + n.z * view[6] )); } } else { irr::memcpy32_small ( &srcT,(&base->TCoords) + t, sizeof ( f32 ) * 2 ); } switch ( Material.org.TextureLayer[t].TextureWrapU ) { case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: dest->Tex[t].x = core::clamp ( (f32) ( M[0] * srcT.x + M[4] * srcT.y + M[8] ), 0.f, 1.f ); break; case ETC_MIRROR: dest->Tex[t].x = M[0] * srcT.x + M[4] * srcT.y + M[8]; if (core::fract(dest->Tex[t].x)>0.5f) dest->Tex[t].x=1.f-dest->Tex[t].x; break; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: dest->Tex[t].x = core::clamp ( (f32) ( M[0] * srcT.x + M[4] * srcT.y + M[8] ), 0.f, 1.f ); if (core::fract(dest->Tex[t].x)>0.5f) dest->Tex[t].x=1.f-dest->Tex[t].x; break; case ETC_REPEAT: default: dest->Tex[t].x = M[0] * srcT.x + M[4] * srcT.y + M[8]; break; } switch ( Material.org.TextureLayer[t].TextureWrapV ) { case ETC_CLAMP: case ETC_CLAMP_TO_EDGE: case ETC_CLAMP_TO_BORDER: dest->Tex[t].y = core::clamp ( (f32) ( M[1] * srcT.x + M[5] * srcT.y + M[9] ), 0.f, 1.f ); break; case ETC_MIRROR: dest->Tex[t].y = M[1] * srcT.x + M[5] * srcT.y + M[9]; if (core::fract(dest->Tex[t].y)>0.5f) dest->Tex[t].y=1.f-dest->Tex[t].y; break; case ETC_MIRROR_CLAMP: case ETC_MIRROR_CLAMP_TO_EDGE: case ETC_MIRROR_CLAMP_TO_BORDER: dest->Tex[t].y = core::clamp ( (f32) ( M[1] * srcT.x + M[5] * srcT.y + M[9] ), 0.f, 1.f ); if (core::fract(dest->Tex[t].y)>0.5f) dest->Tex[t].y=1.f-dest->Tex[t].y; break; case ETC_REPEAT: default: dest->Tex[t].y = M[1] * srcT.x + M[5] * srcT.y + M[9]; break; } } } #if 0 // tangent space light vector, emboss if ( Lights.size () && ( vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_BUMP_DOT3 ) ) { const S3DVertexTangents *tangent = ((S3DVertexTangents*) source ); const SBurningShaderLight &light = LightSpace.Light[0]; sVec4 vp; vp.x = light.pos.x - LightSpace.vertex.x; vp.y = light.pos.y - LightSpace.vertex.y; vp.z = light.pos.z - LightSpace.vertex.z; vp.normalize_xyz(); LightSpace.tangent.x = vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z; LightSpace.tangent.y = vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z; //LightSpace.tangent.z = vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z; LightSpace.tangent.z = 0.f; LightSpace.tangent.normalize_xyz(); f32 scale = 1.f / 128.f; if ( Material.org.MaterialTypeParam > 0.f ) scale = Material.org.MaterialTypeParam; // emboss, shift coordinates dest->Tex[1].x = dest->Tex[0].x + LightSpace.tangent.x * scale; dest->Tex[1].y = dest->Tex[0].y + LightSpace.tangent.y * scale; //dest->Tex[1].z = LightSpace.tangent.z * scale; } #endif if ( LightSpace.Light.size () && ( vSize[VertexCache.vType].Format & VERTEX4D_FORMAT_BUMP_DOT3 ) ) { const S3DVertexTangents *tangent = ((S3DVertexTangents*) source ); sVec4 vp; dest->LightTangent[0].x = 0.f; dest->LightTangent[0].y = 0.f; dest->LightTangent[0].z = 0.f; for ( u32 i = 0; i < 2 && i < LightSpace.Light.size (); ++i ) { const SBurningShaderLight &light = LightSpace.Light[i]; if ( !light.LightIsOn ) continue; vp.x = light.pos.x - LightSpace.vertex.x; vp.y = light.pos.y - LightSpace.vertex.y; vp.z = light.pos.z - LightSpace.vertex.z; /* vp.x = light.pos_objectspace.x - base->Pos.X; vp.y = light.pos_objectspace.y - base->Pos.Y; vp.z = light.pos_objectspace.z - base->Pos.Z; */ vp.normalize_xyz(); // transform by tangent matrix sVec3 l; #if 1 l.x = (vp.x * tangent->Tangent.X + vp.y * tangent->Tangent.Y + vp.z * tangent->Tangent.Z ); l.y = (vp.x * tangent->Binormal.X + vp.y * tangent->Binormal.Y + vp.z * tangent->Binormal.Z ); l.z = (vp.x * tangent->Normal.X + vp.y * tangent->Normal.Y + vp.z * tangent->Normal.Z ); #else l.x = (vp.x * tangent->Tangent.X + vp.y * tangent->Binormal.X + vp.z * tangent->Normal.X ); l.y = (vp.x * tangent->Tangent.Y + vp.y * tangent->Binormal.Y + vp.z * tangent->Normal.Y ); l.z = (vp.x * tangent->Tangent.Z + vp.y * tangent->Binormal.Z + vp.z * tangent->Normal.Z ); #endif /* f32 scale = 1.f / 128.f; scale /= dest->LightTangent[0].b; // emboss, shift coordinates dest->Tex[1].x = dest->Tex[0].x + l.r * scale; dest->Tex[1].y = dest->Tex[0].y + l.g * scale; */ dest->Tex[1].x = dest->Tex[0].x; dest->Tex[1].y = dest->Tex[0].y; // scale bias dest->LightTangent[0].x += l.x; dest->LightTangent[0].y += l.y; dest->LightTangent[0].z += l.z; } dest->LightTangent[0].setLength ( 0.5f ); dest->LightTangent[0].x += 0.5f; dest->LightTangent[0].y += 0.5f; dest->LightTangent[0].z += 0.5f; } #endif clipandproject: dest[0].flag = dest[1].flag = vSize[VertexCache.vType].Format; // test vertex dest[0].flag |= clipToFrustumTest ( dest); // to DC Space, project homogenous vertex if ( (dest[0].flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE ) { ndc_2_dc_and_project2 ( (const s4DVertex**) &dest, 1 ); } //return dest; } // REALINLINE s4DVertex * CBurningVideoDriver::VertexCache_getVertex ( const u32 sourceIndex ) { for ( s32 i = 0; i < VERTEXCACHE_ELEMENT; ++i ) { if ( VertexCache.info[ i ].index == sourceIndex ) { return (s4DVertex *) ( (u8*) VertexCache.mem.data + ( i << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ); } } return 0; } /* Cache based on linear walk indices fill blockwise on the next 16(Cache_Size) unique vertices in indexlist merge the next 16 vertices with the current */ REALINLINE void CBurningVideoDriver::VertexCache_get ( s4DVertex ** face ) { SCacheInfo info[VERTEXCACHE_ELEMENT]; // next primitive must be complete in cache if ( VertexCache.indicesIndex - VertexCache.indicesRun < 3 && VertexCache.indicesIndex < VertexCache.indexCount ) { // rewind to start of primitive VertexCache.indicesIndex = VertexCache.indicesRun; irr::memset32 ( info, VERTEXCACHE_MISS, sizeof ( info ) ); // get the next unique vertices cache line u32 fillIndex = 0; u32 dIndex; u32 i; u32 sourceIndex; while ( VertexCache.indicesIndex < VertexCache.indexCount && fillIndex < VERTEXCACHE_ELEMENT ) { switch ( VertexCache.iType ) { case 1: sourceIndex = ((u16*)VertexCache.indices) [ VertexCache.indicesIndex ]; break; case 2: sourceIndex = ((u32*)VertexCache.indices) [ VertexCache.indicesIndex ]; break; case 4: sourceIndex = VertexCache.indicesIndex; break; } VertexCache.indicesIndex += 1; // if not exist, push back s32 exist = 0; for ( dIndex = 0; dIndex < fillIndex; ++dIndex ) { if ( info[ dIndex ].index == sourceIndex ) { exist = 1; break; } } if ( 0 == exist ) { info[fillIndex++].index = sourceIndex; } } // clear marks for ( i = 0; i!= VERTEXCACHE_ELEMENT; ++i ) { VertexCache.info[i].hit = 0; } // mark all existing for ( i = 0; i!= fillIndex; ++i ) { for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex ) { if ( VertexCache.info[ dIndex ].index == info[i].index ) { info[i].hit = dIndex; VertexCache.info[ dIndex ].hit = 1; break; } } } // fill new for ( i = 0; i!= fillIndex; ++i ) { if ( info[i].hit != VERTEXCACHE_MISS ) continue; for ( dIndex = 0; dIndex < VERTEXCACHE_ELEMENT; ++dIndex ) { if ( 0 == VertexCache.info[dIndex].hit ) { VertexCache_fill ( info[i].index, dIndex ); VertexCache.info[dIndex].hit += 1; info[i].hit = dIndex; break; } } } } const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun ); switch ( VertexCache.iType ) { case 1: { const u16 *p = (const u16 *) VertexCache.indices; face[0] = VertexCache_getVertex ( p[ i0 ] ); face[1] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 1] ); face[2] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 2] ); } break; case 2: { const u32 *p = (const u32 *) VertexCache.indices; face[0] = VertexCache_getVertex ( p[ i0 ] ); face[1] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 1] ); face[2] = VertexCache_getVertex ( p[ VertexCache.indicesRun + 2] ); } break; case 4: face[0] = VertexCache_getVertex ( VertexCache.indicesRun + 0 ); face[1] = VertexCache_getVertex ( VertexCache.indicesRun + 1 ); face[2] = VertexCache_getVertex ( VertexCache.indicesRun + 2 ); break; } VertexCache.indicesRun += VertexCache.primitivePitch; } /*! */ REALINLINE void CBurningVideoDriver::VertexCache_getbypass ( s4DVertex ** face ) { const u32 i0 = core::if_c_a_else_0 ( VertexCache.pType != scene::EPT_TRIANGLE_FAN, VertexCache.indicesRun ); if ( VertexCache.iType == 1 ) { const u16 *p = (const u16 *) VertexCache.indices; VertexCache_fill ( p[ i0 ], 0 ); VertexCache_fill ( p[ VertexCache.indicesRun + 1], 1 ); VertexCache_fill ( p[ VertexCache.indicesRun + 2], 2 ); } else { const u32 *p = (const u32 *) VertexCache.indices; VertexCache_fill ( p[ i0 ], 0 ); VertexCache_fill ( p[ VertexCache.indicesRun + 1], 1 ); VertexCache_fill ( p[ VertexCache.indicesRun + 2], 2 ); } VertexCache.indicesRun += VertexCache.primitivePitch; face[0] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 0 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ); face[1] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 1 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ); face[2] = (s4DVertex *) ( (u8*) VertexCache.mem.data + ( 2 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ); } /*! */ void CBurningVideoDriver::VertexCache_reset ( const void* vertices, u32 vertexCount, const void* indices, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { VertexCache.vertices = vertices; VertexCache.vertexCount = vertexCount; VertexCache.indices = indices; VertexCache.indicesIndex = 0; VertexCache.indicesRun = 0; if ( Material.org.MaterialType == video::EMT_REFLECTION_2_LAYER ) VertexCache.vType = 3; else VertexCache.vType = vType; VertexCache.pType = pType; switch ( iType ) { case EIT_16BIT: VertexCache.iType = 1; break; case EIT_32BIT: VertexCache.iType = 2; break; default: VertexCache.iType = iType; break; } switch ( VertexCache.pType ) { // most types here will not work as expected, only triangles/triangle_fan // is known to work. case scene::EPT_POINTS: VertexCache.indexCount = primitiveCount; VertexCache.primitivePitch = 1; break; case scene::EPT_LINE_STRIP: VertexCache.indexCount = primitiveCount+1; VertexCache.primitivePitch = 1; break; case scene::EPT_LINE_LOOP: VertexCache.indexCount = primitiveCount+1; VertexCache.primitivePitch = 1; break; case scene::EPT_LINES: VertexCache.indexCount = 2*primitiveCount; VertexCache.primitivePitch = 2; break; case scene::EPT_TRIANGLE_STRIP: VertexCache.indexCount = primitiveCount+2; VertexCache.primitivePitch = 1; break; case scene::EPT_TRIANGLES: VertexCache.indexCount = primitiveCount + primitiveCount + primitiveCount; VertexCache.primitivePitch = 3; break; case scene::EPT_TRIANGLE_FAN: VertexCache.indexCount = primitiveCount + 2; VertexCache.primitivePitch = 1; break; case scene::EPT_QUAD_STRIP: VertexCache.indexCount = 2*primitiveCount + 2; VertexCache.primitivePitch = 2; break; case scene::EPT_QUADS: VertexCache.indexCount = 4*primitiveCount; VertexCache.primitivePitch = 4; break; case scene::EPT_POLYGON: VertexCache.indexCount = primitiveCount+1; VertexCache.primitivePitch = 1; break; case scene::EPT_POINT_SPRITES: VertexCache.indexCount = primitiveCount; VertexCache.primitivePitch = 1; break; } irr::memset32 ( VertexCache.info, VERTEXCACHE_MISS, sizeof ( VertexCache.info ) ); } void CBurningVideoDriver::drawVertexPrimitiveList(const void* vertices, u32 vertexCount, const void* indexList, u32 primitiveCount, E_VERTEX_TYPE vType, scene::E_PRIMITIVE_TYPE pType, E_INDEX_TYPE iType) { if (!checkPrimitiveCount(primitiveCount)) return; CNullDriver::drawVertexPrimitiveList(vertices, vertexCount, indexList, primitiveCount, vType, pType, iType); if ( 0 == CurrentShader ) return; VertexCache_reset ( vertices, vertexCount, indexList, primitiveCount, vType, pType, iType ); const s4DVertex * face[3]; f32 dc_area; s32 lodLevel; u32 i; u32 g; u32 m; video::CSoftwareTexture2* tex; for ( i = 0; i < (u32) primitiveCount; ++i ) { VertexCache_get ( (s4DVertex**) face ); // if fully outside or outside on same side if ( ( (face[0]->flag | face[1]->flag | face[2]->flag) & VERTEX4D_CLIPMASK ) != VERTEX4D_INSIDE ) continue; // if fully inside if ( ( face[0]->flag & face[1]->flag & face[2]->flag & VERTEX4D_CLIPMASK ) == VERTEX4D_INSIDE ) { dc_area = screenarea2 ( face ); if ( Material.org.BackfaceCulling && F32_LOWER_EQUAL_0( dc_area ) ) continue; else if ( Material.org.FrontfaceCulling && F32_GREATER_EQUAL_0( dc_area ) ) continue; // select mipmap dc_area = core::reciprocal ( dc_area ); for ( m = 0; m != vSize[VertexCache.vType].TexSize; ++m ) { if ( 0 == (tex = MAT_TEXTURE ( m )) ) { CurrentShader->setTextureParam(m, 0, 0); continue; } lodLevel = s32_log2_f32 ( texelarea2 ( face, m ) * dc_area ); CurrentShader->setTextureParam(m, tex, lodLevel ); select_polygon_mipmap2 ( (s4DVertex**) face, m, tex->getSize() ); } // rasterize CurrentShader->drawTriangle ( face[0] + 1, face[1] + 1, face[2] + 1 ); continue; } // else if not complete inside clipping necessary irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 0 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[0], SIZEOF_SVERTEX * 2 ); irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 1 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[1], SIZEOF_SVERTEX * 2 ); irr::memcpy32_small ( ( (u8*) CurrentOut.data + ( 2 << ( SIZEOF_SVERTEX_LOG2 + 1 ) ) ), face[2], SIZEOF_SVERTEX * 2 ); const u32 flag = CurrentOut.data->flag & VERTEX4D_FORMAT_MASK; for ( g = 0; g != CurrentOut.ElementSize; ++g ) { CurrentOut.data[g].flag = flag; Temp.data[g].flag = flag; } u32 vOut; vOut = clipToFrustum ( CurrentOut.data, Temp.data, 3 ); /* if ( vOut < 3 ) { char buf[256]; struct SCheck { u32 flag; const char * name; }; SCheck check[5]; check[0].flag = face[0]->flag; check[0].name = "face0"; check[1].flag = face[1]->flag; check[1].name = "face1"; check[2].flag = face[2]->flag; check[2].name = "face2"; check[3].flag = (face[0]->flag & face[1]->flag & face[2]->flag); check[3].name = "AND "; check[4].flag = (face[0]->flag | face[1]->flag | face[2]->flag); check[4].name = "OR "; for ( s32 h = 0; h!= 5; ++h ) { sprintf ( buf, "%s: %d %d %d %d %d %d", check[h].name, ( check[h].flag & 1 ), ( check[h].flag & 2 ) >> 1, ( check[h].flag & 4 ) >> 2, ( check[h].flag & 8 ) >> 3, ( check[h].flag & 16 ) >> 4, ( check[h].flag & 32 ) >> 5 ); os::Printer::log( buf ); } sprintf ( buf, "Vout: %d\n", vOut ); os::Printer::log( buf ); int hold = 1; } */ if ( vOut < 3 ) continue; vOut <<= 1; // to DC Space, project homogenous vertex ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut ); /* // TODO: don't stick on 32 Bit Pointer #define PointerAsValue(x) ( (u32) (u32*) (x) ) // if not complete inside clipping necessary if ( ( test & VERTEX4D_INSIDE ) != VERTEX4D_INSIDE ) { u32 v[2] = { PointerAsValue ( Temp ) , PointerAsValue ( CurrentOut ) }; for ( g = 0; g != 6; ++g ) { vOut = clipToHyperPlane ( (s4DVertex*) v[0], (s4DVertex*) v[1], vOut, NDCPlane[g] ); if ( vOut < 3 ) break; v[0] ^= v[1]; v[1] ^= v[0]; v[0] ^= v[1]; } if ( vOut < 3 ) continue; } */ // check 2d backface culling on first dc_area = screenarea ( CurrentOut.data ); if ( Material.org.BackfaceCulling && F32_LOWER_EQUAL_0 ( dc_area ) ) continue; else if ( Material.org.FrontfaceCulling && F32_GREATER_EQUAL_0( dc_area ) ) continue; // select mipmap dc_area = core::reciprocal ( dc_area ); for ( m = 0; m != vSize[VertexCache.vType].TexSize; ++m ) { if ( 0 == (tex = MAT_TEXTURE ( m )) ) { CurrentShader->setTextureParam(m, 0, 0); continue; } lodLevel = s32_log2_f32 ( texelarea ( CurrentOut.data, m ) * dc_area ); CurrentShader->setTextureParam(m, tex, lodLevel ); select_polygon_mipmap ( CurrentOut.data, vOut, m, tex->getSize() ); } // re-tesselate ( triangle-fan, 0-1-2,0-2-3.. ) for ( g = 0; g <= vOut - 6; g += 2 ) { // rasterize CurrentShader->drawTriangle ( CurrentOut.data + 0 + 1, CurrentOut.data + g + 3, CurrentOut.data + g + 5); } } // dump statistics /* char buf [64]; sprintf ( buf,"VCount:%d PCount:%d CacheMiss: %d", vertexCount, primitiveCount, VertexCache.CacheMiss ); os::Printer::log( buf ); */ } //! Sets the dynamic ambient light color. The default color is //! (0,0,0,0) which means it is dark. //! \param color: New color of the ambient light. void CBurningVideoDriver::setAmbientLight(const SColorf& color) { LightSpace.Global_AmbientLight.setColorf ( color ); } //! adds a dynamic light s32 CBurningVideoDriver::addDynamicLight(const SLight& dl) { (void) CNullDriver::addDynamicLight( dl ); SBurningShaderLight l; // l.org = dl; l.Type = dl.Type; l.LightIsOn = true; l.AmbientColor.setColorf ( dl.AmbientColor ); l.DiffuseColor.setColorf ( dl.DiffuseColor ); l.SpecularColor.setColorf ( dl.SpecularColor ); switch ( dl.Type ) { case video::ELT_DIRECTIONAL: l.pos.x = -dl.Direction.X; l.pos.y = -dl.Direction.Y; l.pos.z = -dl.Direction.Z; l.pos.w = 1.f; break; case ELT_POINT: case ELT_SPOT: LightSpace.Flags |= POINTLIGHT; l.pos.x = dl.Position.X; l.pos.y = dl.Position.Y; l.pos.z = dl.Position.Z; l.pos.w = 1.f; /* l.radius = (1.f / dl.Attenuation.Y) * (1.f / dl.Attenuation.Y); l.constantAttenuation = dl.Attenuation.X; l.linearAttenuation = dl.Attenuation.Y; l.quadraticAttenuation = dl.Attenuation.Z; */ l.radius = dl.Radius * dl.Radius; l.constantAttenuation = dl.Attenuation.X; l.linearAttenuation = 1.f / dl.Radius; l.quadraticAttenuation = dl.Attenuation.Z; break; } LightSpace.Light.push_back ( l ); return LightSpace.Light.size() - 1; } //! Turns a dynamic light on or off void CBurningVideoDriver::turnLightOn(s32 lightIndex, bool turnOn) { if(lightIndex > -1 && lightIndex < (s32)LightSpace.Light.size()) { LightSpace.Light[lightIndex].LightIsOn = turnOn; } } //! deletes all dynamic lights there are void CBurningVideoDriver::deleteAllDynamicLights() { LightSpace.reset (); CNullDriver::deleteAllDynamicLights(); } //! returns the maximal amount of dynamic lights the device can handle u32 CBurningVideoDriver::getMaximalDynamicLightAmount() const { return 8; } //! sets a material void CBurningVideoDriver::setMaterial(const SMaterial& material) { Material.org = material; #ifdef SOFTWARE_DRIVER_2_TEXTURE_TRANSFORM for (u32 i = 0; i < 2; ++i) { setTransform((E_TRANSFORMATION_STATE) (ETS_TEXTURE_0 + i), material.getTextureMatrix(i)); } #endif #ifdef SOFTWARE_DRIVER_2_LIGHTING Material.AmbientColor.setR8G8B8 ( Material.org.AmbientColor.color ); Material.DiffuseColor.setR8G8B8 ( Material.org.DiffuseColor.color ); Material.EmissiveColor.setR8G8B8 ( Material.org.EmissiveColor.color ); Material.SpecularColor.setR8G8B8 ( Material.org.SpecularColor.color ); core::setbit_cond ( LightSpace.Flags, Material.org.Shininess != 0.f, SPECULAR ); core::setbit_cond ( LightSpace.Flags, Material.org.FogEnable, FOG ); core::setbit_cond ( LightSpace.Flags, Material.org.NormalizeNormals, NORMALIZE ); #endif setCurrentShader(); } /*! Camera Position in World Space */ void CBurningVideoDriver::getCameraPosWorldSpace () { Transformation[ETS_VIEW_INVERSE] = Transformation[ ETS_VIEW ]; Transformation[ETS_VIEW_INVERSE].makeInverse (); TransformationFlag[ETS_VIEW_INVERSE] = 0; const f32 *M = Transformation[ETS_VIEW_INVERSE].pointer (); /* The viewpoint is at (0., 0., 0.) in eye space. Turning this into a vector [0 0 0 1] and multiply it by the inverse of the view matrix, the resulting vector is the object space location of the camera. */ LightSpace.campos.x = M[12]; LightSpace.campos.y = M[13]; LightSpace.campos.z = M[14]; LightSpace.campos.w = 1.f; } void CBurningVideoDriver::getLightPosObjectSpace () { if ( TransformationFlag[ETS_WORLD] & ETF_IDENTITY ) { Transformation[ETS_WORLD_INVERSE] = Transformation[ETS_WORLD]; TransformationFlag[ETS_WORLD_INVERSE] |= ETF_IDENTITY; } else { Transformation[ETS_WORLD].getInverse ( Transformation[ETS_WORLD_INVERSE] ); TransformationFlag[ETS_WORLD_INVERSE] &= ~ETF_IDENTITY; } for ( u32 i = 0; i < 1 && i < LightSpace.Light.size(); ++i ) { SBurningShaderLight &l = LightSpace.Light[i]; Transformation[ETS_WORLD_INVERSE].transformVec3 ( &l.pos_objectspace.x, &l.pos.x ); } } #ifdef SOFTWARE_DRIVER_2_LIGHTING //! Sets the fog mode. void CBurningVideoDriver::setFog(SColor color, E_FOG_TYPE fogType, f32 start, f32 end, f32 density, bool pixelFog, bool rangeFog) { CNullDriver::setFog(color, fogType, start, end, density, pixelFog, rangeFog); LightSpace.FogColor.setA8R8G8B8 ( color.color ); } /*! applies lighting model */ void CBurningVideoDriver::lightVertex ( s4DVertex *dest, u32 vertexargb ) { sVec3 dColor; dColor = LightSpace.Global_AmbientLight; dColor.add ( Material.EmissiveColor ); if ( Lights.size () == 0 ) { dColor.saturate( dest->Color[0], vertexargb); return; } sVec3 ambient; sVec3 diffuse; sVec3 specular; // the universe started in darkness.. ambient.set ( 0.f, 0.f, 0.f ); diffuse.set ( 0.f, 0.f, 0.f ); specular.set ( 0.f, 0.f, 0.f ); u32 i; f32 dot; f32 len; f32 attenuation; sVec4 vp; // unit vector vertex to light sVec4 lightHalf; // blinn-phong reflection for ( i = 0; i!= LightSpace.Light.size (); ++i ) { const SBurningShaderLight &light = LightSpace.Light[i]; if ( !light.LightIsOn ) continue; // accumulate ambient ambient.add ( light.AmbientColor ); switch ( light.Type ) { case video::ELT_SPOT: case video::ELT_POINT: // surface to light vp.x = light.pos.x - LightSpace.vertex.x; vp.y = light.pos.y - LightSpace.vertex.y; vp.z = light.pos.z - LightSpace.vertex.z; //vp.x = light.pos_objectspace.x - LightSpace.vertex.x; //vp.y = light.pos_objectspace.y - LightSpace.vertex.x; //vp.z = light.pos_objectspace.z - LightSpace.vertex.x; len = vp.get_length_xyz_square(); if ( light.radius < len ) continue; len = core::reciprocal_squareroot ( len ); // build diffuse reflection //angle between normal and light vector vp.mul ( len ); dot = LightSpace.normal.dot_xyz ( vp ); if ( dot < 0.f ) continue; attenuation = light.constantAttenuation + ( 1.f - ( len * light.linearAttenuation ) ); // diffuse component diffuse.mulAdd ( light.DiffuseColor, 3.f * dot * attenuation ); if ( !(LightSpace.Flags & SPECULAR) ) continue; // build specular // surface to view lightHalf.x = LightSpace.campos.x - LightSpace.vertex.x; lightHalf.y = LightSpace.campos.y - LightSpace.vertex.y; lightHalf.z = LightSpace.campos.z - LightSpace.vertex.z; lightHalf.normalize_xyz(); lightHalf += vp; lightHalf.normalize_xyz(); // specular dot = LightSpace.normal.dot_xyz ( lightHalf ); if ( dot < 0.f ) continue; //specular += light.SpecularColor * ( powf ( Material.org.Shininess ,dot ) * attenuation ); specular.mulAdd ( light.SpecularColor, dot * attenuation ); break; case video::ELT_DIRECTIONAL: //angle between normal and light vector dot = LightSpace.normal.dot_xyz ( light.pos ); if ( dot < 0.f ) continue; // diffuse component diffuse.mulAdd ( light.DiffuseColor, dot ); break; } } // sum up lights dColor.mulAdd (ambient, Material.AmbientColor ); dColor.mulAdd (diffuse, Material.DiffuseColor); dColor.mulAdd (specular, Material.SpecularColor); dColor.saturate ( dest->Color[0], vertexargb ); } #endif //! draws an 2d image, using a color (if color is other then Color(255,255,255,255)) and the alpha channel of the texture if wanted. void CBurningVideoDriver::draw2DImage(const video::ITexture* texture, const core::position2d<s32>& destPos, const core::rect<s32>& sourceRect, const core::rect<s32>* clipRect, SColor color, bool useAlphaChannelOfTexture) { if (texture) { if (texture->getDriverType() != EDT_BURNINGSVIDEO) { os::Printer::log("Fatal Error: Tried to copy from a surface not owned by this driver.", ELL_ERROR); return; } #if 0 // 2d methods don't use viewPort core::position2di dest = destPos; core::recti clip=ViewPort; if (ViewPort.getSize().Width != ScreenSize.Width) { dest.X=ViewPort.UpperLeftCorner.X+core::round32(destPos.X*ViewPort.getWidth()/(f32)ScreenSize.Width); dest.Y=ViewPort.UpperLeftCorner.Y+core::round32(destPos.Y*ViewPort.getHeight()/(f32)ScreenSize.Height); if (clipRect) { clip.constrainTo(*clipRect); } clipRect = &clip; } #endif if (useAlphaChannelOfTexture) ((CSoftwareTexture2*)texture)->getImage()->copyToWithAlpha( RenderTargetSurface, destPos, sourceRect, color, clipRect); else ((CSoftwareTexture2*)texture)->getImage()->copyTo( RenderTargetSurface, destPos, sourceRect, clipRect); } } //! Draws a 2d line. void CBurningVideoDriver::draw2DLine(const core::position2d<s32>& start, const core::position2d<s32>& end, SColor color) { BackBuffer->drawLine(start, end, color ); } //! Draws a pixel void CBurningVideoDriver::drawPixel(u32 x, u32 y, const SColor & color) { BackBuffer->setPixel(x, y, color, true); } //! draw an 2d rectangle void CBurningVideoDriver::draw2DRectangle(SColor color, const core::rect<s32>& pos, const core::rect<s32>* clip) { if (clip) { core::rect<s32> p(pos); p.clipAgainst(*clip); if(!p.isValid()) return; BackBuffer->drawRectangle(p, color); } else { if(!pos.isValid()) return; BackBuffer->drawRectangle(pos, color); } } //! Only used by the internal engine. Used to notify the driver that //! the window was resized. void CBurningVideoDriver::OnResize(const core::dimension2d<u32>& size) { // make sure width and height are multiples of 2 core::dimension2d<u32> realSize(size); if (realSize.Width % 2) realSize.Width += 1; if (realSize.Height % 2) realSize.Height += 1; if (ScreenSize != realSize) { if (ViewPort.getWidth() == (s32)ScreenSize.Width && ViewPort.getHeight() == (s32)ScreenSize.Height) { ViewPort.UpperLeftCorner.X = 0; ViewPort.UpperLeftCorner.Y = 0; ViewPort.LowerRightCorner.X = realSize.Width; ViewPort.LowerRightCorner.X = realSize.Height; } ScreenSize = realSize; bool resetRT = (RenderTargetSurface == BackBuffer); if (BackBuffer) BackBuffer->drop(); BackBuffer = new CImage(BURNINGSHADER_COLOR_FORMAT, realSize); if (resetRT) setRenderTarget(BackBuffer); } } //! returns the current render target size const core::dimension2d<u32>& CBurningVideoDriver::getCurrentRenderTargetSize() const { return RenderTargetSize; } //!Draws an 2d rectangle with a gradient. void CBurningVideoDriver::draw2DRectangle(const core::rect<s32>& position, SColor colorLeftUp, SColor colorRightUp, SColor colorLeftDown, SColor colorRightDown, const core::rect<s32>* clip) { #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR core::rect<s32> pos = position; if (clip) pos.clipAgainst(*clip); if (!pos.isValid()) return; const core::dimension2d<s32> renderTargetSize ( ViewPort.getSize() ); const s32 xPlus = -(renderTargetSize.Width>>1); const f32 xFact = 1.0f / (renderTargetSize.Width>>1); const s32 yPlus = renderTargetSize.Height-(renderTargetSize.Height>>1); const f32 yFact = 1.0f / (renderTargetSize.Height>>1); // fill VertexCache direct s4DVertex *v; VertexCache.vertexCount = 4; VertexCache.info[0].index = 0; VertexCache.info[1].index = 1; VertexCache.info[2].index = 2; VertexCache.info[3].index = 3; v = &VertexCache.mem.data [ 0 ]; v[0].Pos.set ( (f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.UpperLeftCorner.Y) * yFact, 0.f, 1.f ); v[0].Color[0].setA8R8G8B8 ( colorLeftUp.color ); v[2].Pos.set ( (f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus- pos.UpperLeftCorner.Y) * yFact, 0.f, 1.f ); v[2].Color[0].setA8R8G8B8 ( colorRightUp.color ); v[4].Pos.set ( (f32)(pos.LowerRightCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.f ,1.f ); v[4].Color[0].setA8R8G8B8 ( colorRightDown.color ); v[6].Pos.set ( (f32)(pos.UpperLeftCorner.X+xPlus) * xFact, (f32)(yPlus-pos.LowerRightCorner.Y) * yFact, 0.f, 1.f ); v[6].Color[0].setA8R8G8B8 ( colorLeftDown.color ); s32 i; u32 g; for ( i = 0; i!= 8; i += 2 ) { v[i + 0].flag = clipToFrustumTest ( v + i ); v[i + 1].flag = 0; if ( (v[i].flag & VERTEX4D_INSIDE ) == VERTEX4D_INSIDE ) { ndc_2_dc_and_project ( v + i + 1, v + i, 2 ); } } IBurningShader * render; render = BurningShader [ ETR_GOURAUD_ALPHA_NOZ ]; render->setRenderTarget(RenderTargetSurface, ViewPort); static const s16 indexList[6] = {0,1,2,0,2,3}; s4DVertex * face[3]; for ( i = 0; i!= 6; i += 3 ) { face[0] = VertexCache_getVertex ( indexList [ i + 0 ] ); face[1] = VertexCache_getVertex ( indexList [ i + 1 ] ); face[2] = VertexCache_getVertex ( indexList [ i + 2 ] ); // test clipping u32 test = face[0]->flag & face[1]->flag & face[2]->flag & VERTEX4D_INSIDE; if ( test == VERTEX4D_INSIDE ) { render->drawTriangle ( face[0] + 1, face[1] + 1, face[2] + 1 ); continue; } // Todo: all vertices are clipped in 2d.. // is this true ? u32 vOut = 6; memcpy ( CurrentOut.data + 0, face[0], sizeof ( s4DVertex ) * 2 ); memcpy ( CurrentOut.data + 2, face[1], sizeof ( s4DVertex ) * 2 ); memcpy ( CurrentOut.data + 4, face[2], sizeof ( s4DVertex ) * 2 ); vOut = clipToFrustum ( CurrentOut.data, Temp.data, 3 ); if ( vOut < 3 ) continue; vOut <<= 1; // to DC Space, project homogenous vertex ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut ); // re-tesselate ( triangle-fan, 0-1-2,0-2-3.. ) for ( g = 0; g <= vOut - 6; g += 2 ) { // rasterize render->drawTriangle ( CurrentOut.data + 1, &CurrentOut.data[g + 3], &CurrentOut.data[g + 5] ); } } #else draw2DRectangle ( colorLeftUp, position, clip ); #endif } //! Draws a 3d line. void CBurningVideoDriver::draw3DLine(const core::vector3df& start, const core::vector3df& end, SColor color) { Transformation [ ETS_CURRENT].transformVect ( &CurrentOut.data[0].Pos.x, start ); Transformation [ ETS_CURRENT].transformVect ( &CurrentOut.data[2].Pos.x, end ); u32 g; u32 vOut; // no clipping flags for ( g = 0; g != CurrentOut.ElementSize; ++g ) { CurrentOut.data[g].flag = 0; Temp.data[g].flag = 0; } // vertices count per line vOut = clipToFrustum ( CurrentOut.data, Temp.data, 2 ); if ( vOut < 2 ) return; vOut <<= 1; IBurningShader * line; line = BurningShader [ ETR_TEXTURE_GOURAUD_WIRE ]; line->setRenderTarget(RenderTargetSurface, ViewPort); // to DC Space, project homogenous vertex ndc_2_dc_and_project ( CurrentOut.data + 1, CurrentOut.data, vOut ); // unproject vertex color #ifdef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR for ( g = 0; g != vOut; g+= 2 ) { CurrentOut.data[ g + 1].Color[0].setA8R8G8B8 ( color.color ); } #endif for ( g = 0; g <= vOut - 4; g += 2 ) { // rasterize line->drawLine ( CurrentOut.data + 1, CurrentOut.data + g + 3 ); } } //! \return Returns the name of the video driver. Example: In case of the DirectX8 //! driver, it would return "Direct3D8.1". const wchar_t* CBurningVideoDriver::getName() const { #ifdef BURNINGVIDEO_RENDERER_BEAUTIFUL return L"Burning's Video 0.47 beautiful"; #elif defined ( BURNINGVIDEO_RENDERER_ULTRA_FAST ) return L"Burning's Video 0.47 ultra fast"; #elif defined ( BURNINGVIDEO_RENDERER_FAST ) return L"Burning's Video 0.47 fast"; #else return L"Burning's Video 0.47"; #endif } //! Returns the graphics card vendor name. core::stringc CBurningVideoDriver::getVendorInfo() { return "Burning's Video: Ing. Thomas Alten (c) 2006-2011"; } //! Returns type of video driver E_DRIVER_TYPE CBurningVideoDriver::getDriverType() const { return EDT_BURNINGSVIDEO; } //! returns color format ECOLOR_FORMAT CBurningVideoDriver::getColorFormat() const { return BURNINGSHADER_COLOR_FORMAT; } //! Returns the transformation set by setTransform const core::matrix4& CBurningVideoDriver::getTransform(E_TRANSFORMATION_STATE state) const { return Transformation[state]; } //! Creates a render target texture. ITexture* CBurningVideoDriver::addRenderTargetTexture(const core::dimension2d<u32>& size, const io::path& name, const ECOLOR_FORMAT format) { CImage* img = new CImage(BURNINGSHADER_COLOR_FORMAT, size); ITexture* tex = new CSoftwareTexture2(img, name, CSoftwareTexture2::IS_RENDERTARGET ); img->drop(); addTexture(tex); tex->drop(); return tex; } //! Clears the DepthBuffer. void CBurningVideoDriver::clearZBuffer() { if (DepthBuffer) DepthBuffer->clear(); } //! Returns an image created from the last rendered frame. IImage* CBurningVideoDriver::createScreenShot() { if (BackBuffer) { CImage* tmp = new CImage(BackBuffer->getColorFormat(), BackBuffer->getDimension()); BackBuffer->copyTo(tmp); return tmp; } else return 0; } //! returns a device dependent texture from a software surface (IImage) //! THIS METHOD HAS TO BE OVERRIDDEN BY DERIVED DRIVERS WITH OWN TEXTURES ITexture* CBurningVideoDriver::createDeviceDependentTexture(IImage* surface, const io::path& name, void* mipmapData) { return new CSoftwareTexture2( surface, name, (getTextureCreationFlag(ETCF_CREATE_MIP_MAPS) ? CSoftwareTexture2::GEN_MIPMAP : 0 ) | (getTextureCreationFlag(ETCF_ALLOW_NON_POWER_2) ? 0 : CSoftwareTexture2::NP2_SIZE ), mipmapData); } //! Returns the maximum amount of primitives (mostly vertices) which //! the device is able to render with one drawIndexedTriangleList //! call. u32 CBurningVideoDriver::getMaximalPrimitiveCount() const { return 0xFFFFFFFF; } //! Draws a shadow volume into the stencil buffer. To draw a stencil shadow, do //! this: First, draw all geometry. Then use this method, to draw the shadow //! volume. Next use IVideoDriver::drawStencilShadow() to visualize the shadow. void CBurningVideoDriver::drawStencilShadowVolume(const core::vector3df* triangles, s32 count, bool zfail) { IBurningShader *shader = BurningShader [ ETR_STENCIL_SHADOW ]; CurrentShader = shader; shader->setRenderTarget(RenderTargetSurface, ViewPort); Material.org.MaterialType = video::EMT_SOLID; Material.org.Lighting = false; Material.org.ZWriteEnable = false; Material.org.ZBuffer = ECFN_LESSEQUAL; LightSpace.Flags &= ~VERTEXTRANSFORM; //glStencilMask(~0); //glStencilFunc(GL_ALWAYS, 0, ~0); if (zfail) { Material.org.BackfaceCulling = true; Material.org.FrontfaceCulling = false; shader->setParam ( 0, 0 ); shader->setParam ( 1, 1 ); shader->setParam ( 2, 0 ); drawVertexPrimitiveList ( triangles, count, 0, count/3, (video::E_VERTEX_TYPE) 4, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) 4 ); //glStencilOp(GL_KEEP, incr, GL_KEEP); //glDrawArrays(GL_TRIANGLES,0,count); Material.org.BackfaceCulling = false; Material.org.FrontfaceCulling = true; shader->setParam ( 0, 0 ); shader->setParam ( 1, 2 ); shader->setParam ( 2, 0 ); drawVertexPrimitiveList ( triangles, count, 0, count/3, (video::E_VERTEX_TYPE) 4, scene::EPT_TRIANGLES, (video::E_INDEX_TYPE) 4 ); //glStencilOp(GL_KEEP, decr, GL_KEEP); //glDrawArrays(GL_TRIANGLES,0,count); } else // zpass { Material.org.BackfaceCulling = true; Material.org.FrontfaceCulling = false; shader->setParam ( 0, 0 ); shader->setParam ( 1, 0 ); shader->setParam ( 2, 1 ); //glStencilOp(GL_KEEP, GL_KEEP, incr); //glDrawArrays(GL_TRIANGLES,0,count); Material.org.BackfaceCulling = false; Material.org.FrontfaceCulling = true; shader->setParam ( 0, 0 ); shader->setParam ( 1, 0 ); shader->setParam ( 2, 2 ); //glStencilOp(GL_KEEP, GL_KEEP, decr); //glDrawArrays(GL_TRIANGLES,0,count); } } //! Fills the stencil shadow with color. After the shadow volume has been drawn //! into the stencil buffer using IVideoDriver::drawStencilShadowVolume(), use this //! to draw the color of the shadow. void CBurningVideoDriver::drawStencilShadow(bool clearStencilBuffer, video::SColor leftUpEdge, video::SColor rightUpEdge, video::SColor leftDownEdge, video::SColor rightDownEdge) { if (!StencilBuffer) return; // draw a shadow rectangle covering the entire screen using stencil buffer const u32 h = RenderTargetSurface->getDimension().Height; const u32 w = RenderTargetSurface->getDimension().Width; tVideoSample *dst; u32 *stencil; u32* const stencilBase=(u32*) StencilBuffer->lock(); for ( u32 y = 0; y < h; ++y ) { dst = (tVideoSample*)RenderTargetSurface->lock() + ( y * w ); stencil = stencilBase + ( y * w ); for ( u32 x = 0; x < w; ++x ) { if ( stencil[x] > 1 ) { dst[x] = PixelBlend32 ( dst[x], leftUpEdge.color ); } } } StencilBuffer->clear(); } core::dimension2du CBurningVideoDriver::getMaxTextureSize() const { return core::dimension2du(SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE, SOFTWARE_DRIVER_2_TEXTURE_MAXSIZE); } } // end namespace video } // end namespace irr #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ namespace irr { namespace video { //! creates a video driver IVideoDriver* createBurningVideoDriver(const irr::SIrrlichtCreationParameters& params, io::IFileSystem* io, video::IImagePresenter* presenter) { #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_ return new CBurningVideoDriver(params, io, presenter); #else return 0; #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_ } } // end namespace video } // end namespace irr
Options | Liens officiels | Caractéristiques | Statistiques | Communauté |
---|---|---|---|---|
Corrections |
|
xhtml 1.0 css 2.1 Propulsé par FluxBB Traduit par FluxBB.fr |
882 membres 1429 sujets 11119 messages |
Dernier membre inscrit: LiseBuisson96 69 invités en ligne Aucun membre connecté RSS Feed |